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ABSTRACT

The estimation of the polarisation P of extragalactic compact sources in cosmic microwave background (CMB) images is a very
important task in order to clean these images for cosmological purposes –for example, to constrain the tensor-to-scalar ratio of
primordial fluctuations during inflation– and also to obtain relevant astrophysical information about the compact sources themselves
in a frequency range, ν ∼ 10–200 GHz, where observations have only very recently started to become available. In this paper, we
propose a Bayesian maximum a posteriori approach estimation scheme which incorporates prior information about the distribution
of the polarisation fraction of extragalactic compact sources between 1 and 100 GHz. We apply this Bayesian scheme to white noise
simulations and to more realistic simulations that include CMB intensity, Galactic foregrounds, and instrumental noise with the
characteristics of the QUIJOTE (Q U I JOint TEnerife) experiment wide survey at 11 GHz. Using these simulations, we also compare
our Bayesian method with the frequentist filtered fusion method that has been already used in the Wilkinson Microwave Anisotropy
Probe data and in the Planck mission. We find that the Bayesian method allows us to decrease the threshold for a feasible estimation
of P to levels below ∼100 mJy (as compared to ∼500 mJy which was the equivalent threshold for the frequentist filtered fusion). We
compare the bias introduced by the Bayesian method and find it to be small in absolute terms. Finally, we test the robustness of the
Bayesian estimator against uncertainties in the prior and in the flux density of the sources. We find that the Bayesian estimator is
robust against moderate changes in the parameters of the prior and almost insensitive to realistic errors in the estimated photometry
of the sources.

Key words. methods: data analysis – techniques: image processing – polarization – cosmic background radiation –
radio continuum: galaxies

1. Introduction

The polarisation properties of extragalactic radio sources (ERS)
–that is to say radio galaxies, radio loud quasars, blazars, etc.–
are not well constrained even at centimetre wavelengths, given
that the total linear polarisation of ERS, P, in general consti-
tutes a small fraction of their total flux density, S . The observed
value of P being typically a few per cent, with only very few
ERS showing a total polarisation fraction, Π = P/S , as high as
∼10 per cent of the total flux density (e.g., Sajina et al. 2011;
Tucci & Toffolatti 2012). Moreover, at shorter wavelengths, that
is at λ ≤ 1 cm, these properties are still poorly known due to
the difficulty of properly calibrating in the radio to millimetre
regime that afflicted the polarisation experiments until a few
years ago. However, the knowledge of the total and polarisa-
tion fraction of ERS is rapidly improving at high radio frequen-
cies thanks to large samples of sources mainly observed by the
Australia Telescope Compact Array (ATCA) and by the Very
Large Array (VLA; Sadler et al. 2006; López-Caniego et al.
2009; Massardi et al. 2008, 2011, 2013; Murphy et al. 2010;
Jackson et al. 2010; Galluzzi et al. 2017, 2018). More recently,
and thanks to the very high sensitivity of the new detectors of
the Atacama Large Millimetre Array (ALMA), Galluzzi et al.

(2019) could extend the analysis of polarisation properties of
ERS performed by Galluzzi et al. (2018) up to 97.5 GHz, by
polarimetric observations of a complete sample of 32 extragalac-
tic radio sources. Their findings show that the distribution of the
observed Π fractions is, again, well fitted by a log-normal distri-
bution, thus confirming previous outcomes at lower frequencies
(Massardi et al. 2013; Galluzzi et al. 2018) and also the predic-
tions of Tucci & Toffolatti (2012). The analysis of Galluzzi et al.
(2019) also confirms the absence of any statistically significant
trend of polarisation properties of ERS with the frequency or the
flux density.

Recent analyses of the ERS present in the full sky cosmic
microwave background (CMB) anisotropy maps in polarisation
provided by the European Space Agency (ESA) Planck mis-
sion (Planck Collaboration I 2016; Planck Collaboration XXVI
2016) also indicate typical median polarisation fractions of ERS
of 2−3% at frequencies as high as 300 GHz (Bonavera et al.
2017a,b; Trombetti et al. 2018). Therefore, an accurate charac-
terisation of polarisation properties of ERS as well as their effi-
cient detection and subtraction from CMB maps is especially
crucial for measuring the primordial CMB B-mode polarisa-
tion down to values of the tensor to scalar ratios r ∼ 0.001,
which could be achievable by future space probes (i.e. LiteBird:
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Sekimoto et al. 2018; COrE: Delabrouille et al. 2018). We
remind readers that the simulations by Remazeilles et al. (2018)
have shown that at these low values of r, unresolved polarised
ERS can probably be the dominant foreground at multipoles
` > 50 in the power spectrum of the CMB anisotropy. These
results have been confirmed by Puglisi et al. (2018) by exploit-
ing the state-of-the-art data sets on polarised point sources over
the 1.4–217 GHz frequency range.

In addition to the essential information that the polarisation
of ERS provides about the structure and evolution of extragalac-
tic baryonic matter at low to intermediate redshifts, the study
of this polarised radiation is paramount for cosmology, and in
particular for CMB science. ERS detection and subtraction is
a fundamental part of the component separation process neces-
sary to achieve the science goals set for the next generation of
CMB experiments. In particular, ERS would significantly affect
the estimation of the CMB polarisation angular power spectra
and, therefore, limit the ability of CMB experiments to constrain
cosmological parameters such as the tensor-to-scalar ratio r of
primordial perturbations during inflation. ERS could become an
important obstacle for the detection of the primordial gravita-
tional wave background (PGWB) for low values of r (Tucci et al.
2005; Puglisi et al. 2018; Trombetti et al. 2018) due to both the
additional noise they constitute in themselves and the reduction
in delensing power they cause by degrading lensing potential
reconstructions (see, e.g., Sailer et al. 2020). Therefore, during
recent years, the interest in the development of signal processing
techniques specifically tailored for the detection and characteri-
sation of ERS in CMB images has grown in the literature.

Signal processing techniques for the detection of polarised
ERS must take the spinorial nature of electromagnetic waves
into account. The signal can not only be described by one but as
many as four independent components, one for the total inten-
sity of the radiation field and three for its polarisation state. It is
convenient to use the Stokes’ parameters S ,Q,U, and V (S for
total intensity1 in terms of flux density, see, e.g., Galluzzi et al.
(2019), Q and U for linear polarisation, and V for circular polar-
isation), but other representations are also possible. The Stokes’
V parameter is not usually considered since Thomson scatter-
ing does not induce circular polarisation in the CMB. Circular
polarisation mechanisms in active galaxies have been described
in the literature (see for example Rayner et al. 2000), but they
are nonetheless considered to be sub-dominant in comparison to
linear polarisation mechanisms. Therefore, in this paper we con-
sider, as it is customary2, V = 0. Then the signal processing of
polarised ERS must deal with three independent quantities, two
of them having the mathematical structure of a spinor field.

The S , Q, and U signals (or, alternatively, S , E, and B,
or any other set of three quantities obtained from the Stokes’

1 The usual notation for this Stokes parameter is I. However, in this
work we have changed the notation in order to avoid confusion between
the intrinsic intensity of a source, which we refer to as S 0 later in this
paper, and the modified Bessel function of zero order, I0, that appears
in several equations in Sect. 2.
2 Foregrounds can produce circular polarisation under some circum-
stances, and it has been observed in a few extragalactic sources. The
value of V is typically much lower than the other Stokes’ parameters. As
it is explained in Sect. 2, the existence of sources with non-zero circu-
lar polarisation would not affect our estimations of the Q and U Stokes
parameters. Of course, if there was a significant V term, neglecting it
would lead us to miss a part of the polarisation P. However, our method
can be easily adapted to work with a third component in the form
of an additional image –corresponding to the V Stokes’ parameter– if
necessary.

parameters) can be treated separately as independent images to
which any of the standard compact component separation tech-
niques could be applied. The main difference with respect to the
classical setting is that, unlike the total flux density S , which is
always non-negative, Q and U can be either positive, negative,
or zero. From a physical point of view, however, it makes more
sense to process the polarisation data jointly (see Herranz et al.
2012, for a review on the topic). In particular, the total polari-
sation of a source P =

√
Q2 + U2 and its polarisation fraction

Π = P/S are directly related to the physical processes occurring
along the path of photons from the ERS to Earth, while Q and U
are frame-dependent quantities lacking in physical meaning on
themselves.

The two main problems arising when dealing with P are the
typically low signal-to-noise ratio of the polarisation signal com-
ing from ERS and the non-Gaussian distribution of its noise
statistics. Regarding the former, as mentioned above, the typi-
cal polarisation fractions of ERS at frequencies below ∼10 GHz
are at most 10%. This means that only a few ERS are bright
enough to be detected in polarisation with present-day technol-
ogy. A standard procedure to avoid false detections in polari-
sation is to detect sources in total intensity and then to try to
estimate their polarisation properties in a non-blind way3. We
follow this approach in this paper. Regarding the latter prob-
lem, assuming that the Q and U noises are Gaussian-distributed,
P would have a non-Gaussian Rice distribution (Rice 1945).
Rician distribution has strictly non-negative support and heavy
tails, which firstly biases the estimation of the polarisation of
the sources and secondly disrupts the intuitive interpretation of
signal-to-noise in terms of σ thresholds which is used virtually
everywhere else in radio astronomy. Simmons & Stewart (1985)
discussed four estimators which attempted to correct for bias-
ing in the degree of linear polarisation in the presence of low
signal-to-noise ratios. More recently, Argüeso et al. (2009) stud-
ied the problem in the context of CMB astronomy and developed
two methods for the detection and estimation of ERS in polari-
sation data: one that applies the Neyman-Pearson lemma to the
Rice distribution, the Neyman-Pearson filter (NPF), and another
based on pre-filtering before fusion of Q and U to obtain P, the
filtered fusion (FF) method. That work found that under typi-
cal CMB-experiment settings, the FF outperforms the NPF both
in terms of computational simplicity and accuracy, especially
for low fluxes. López-Caniego et al. (2009) applied the FF to
the Wilkinson Microwave Anisotropy Probe (WMAP) five-year
data. The same method has been used to study the polarisation
of the Planck Second Catalogue of Compact Sources (PCCS2,
Planck Collaboration XXVI 2016) and of the QUIJOTE experi-
ment wide survey source catalogue (Herranz et al. 2021). Alter-
natively, a novel method for the estimation of the polarisation
intensity and angle of compact sources in the E and B modes of
polarisation based on steerable wavelets has been recently pro-
posed by Diego-Palazuelos et al. (2021).

All the previously mentioned methods attempt to estimate
the ERS polarisation by minimising, as much as possible, the
impact of noise and Galactic and extragalactic foregrounds on
the observed signal. The expected value of the polarisation does
not intervene in the estimation process. In other words, no a pri-
ori information is used in the estimation. Until very recently, this
had been the most sensible choice as the polarisation properties
of extragalactic sources were virtually unknown at microwave

3 That is, focusing efforts on the precise position of the source once it
has been detected in intensity, i.e. the non-blindness is only related to
the positions of targets, not to any other quantity.
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frequencies. However, as recent experiments and facilities such
as the ALMA, Planck, and the upgraded versions of ATCA and
VLA start shedding light on the λ ≤ 1 cm polarised sky, the pos-
sibility of adding physical priors to our signal processing tech-
niques is gradually opening. In this paper, we propose a Bayesian
maximum a posteriori (MAP) method for the estimation of the
polarisation properties of point sources.

The structure of this paper is as follows. In Sect. 2 we review
the current observational evidence to construct physical priors
on the polarisation fraction of ERS and incorporate that infor-
mation into two possible MAP estimators of the polarisation of
a compact source of known flux density S . These MAP esti-
mators take a form analogous to the Neyman-Pearson filter and
FF by Argüeso et al. (2009), respectively, plus additional terms
that contain the a priori physical information on the probability
distribution function of P for ERS. We call these two methods
Bayesian Rice and Bayesian filtered fusion (BFF), respectively.
The BFF is easily applicable for both white and colour noise. For
this reason, and because in Argüeso et al. (2009) it was shown
that the FF outperforms the NPF, we focus on the BFF in the rest
of the paper. In Sect. 3 we describe the simulations we used to
test the BFF method. We first made simplistic simulations con-
taining just white noise in Q and U and then we upgraded to real-
istic simulations with polarised Galactic foregrounds and CMB
emissions. In both cases, we used angular resolution, pixel scale,
and noise levels similar to the upcoming QUIJOTE experiment
wide survey data at 11 GHz (Rubino et al. 2021). The results of
applying the BFF to our simulations are discussed in Sect. 4,
where we also provide a brief discussion about the robustness of
the method against uncertainties on the priors and the determi-
nation of the total flux density of the sources. Finally, we draw
our conclusions in Sect. 5.

2. Method

When we try to detect or estimate the polarisation P0 of a com-
pact source embedded in Gaussian noise, which can be a good
approximation when dealing with sources present in CMB maps,
and when we consider the measured polarisation P =

√
Q2 + U2

with similar Gaussian noise dispersions in Q and U, that is
σQ = σU = σ, the distribution of P given P0 follows the Rice
distribution

f (P|P0) = P/σ2 exp
[
−

(
P2 + P2

0

)
/2σ2

]
I0

(
PP0/σ

2
)
. (1)

This is the conditional probability distribution of P, the mea-
sured polarisation, the given P0, and the source polarisation,
with I0 being the modified Bessel function of zero order (Rice
1945). This distribution has been used to obtain suitable esti-
mators of P0 (Simmons & Stewart 1985; Argüeso et al. 2009;
López-Caniego et al. 2009; Herranz et al. 2012). However, no
previous knowledge about P0 is assumed in these papers and
this information, if available, could be very useful after being
incorporated in a Bayesian scheme. Recently, relevant data about
the distribution of the polarisation fraction at different fre-
quencies, Π = P0/S 0, with S 0 being the source flux density,
have been presented (Massardi et al. 2013; Galluzzi et al. 2017,
2019). According to these authors, this distribution can be rep-
resented by a log-normal probability density function (pdf)

g(Π) =
1

√
2πσΠΠ

exp
[
−(log(Π) − µ)2/2σ2

Π

]
, (2)

where µ = log Πmed –with Πmed being the median polarisa-
tion fraction– and σΠ are easily obtained from 〈Π〉 and 〈Π2〉

(Crow & Shimizu 1988). Since P0 = ΠS 0, if we assume that
the value of S 0 is known, then the distribution of P0 is readily
calculated

g (P0) =
1

√
2πσΠP0

exp
[
−

(
log P0 − µ1

)2 /2σ2
Π

]
(3)

with µ1 = µ + log (S 0) = log (S 0Πmed). This assumption is
safe, since estimating S 0 is much simpler than estimating P0
and point sources for which the polarised emission is detectable
tend to have high flux densities. Therefore, we work, in general,
with non-blind detection in polarisation. The knowledge of S 0
allowed us to write the joint probability distribution of P and P0,
h(P, P0) = f (P|P0)g(P0), and by using Bayesâ theorem

f (P0|P) =
h (P, P0)

g(P)
(4)

with g(P) =
∫

h (P, P0) dP0. Finally, by substituting Eqs. (1)
and (3) in Eq. (4), we obtain

f (P0|P) =

e−P2
0/2σ

2
I0

[
PP0
σ2

]
exp

[
−

(log P0−µ1)2

2σ2
Π

]
1

P0∫
e−P2

0/2σ
2 I0

[
PP0
σ2

]
exp

[
−

(log P0−µ1)2

2σ2
Π

]
dP0
P0

. (5)

The integral in the denominator is just a normalisation. We have
found the distribution of P0 given P, the posterior distribution,
simply by assuming Gaussian noise in Q and U with the same
dispersion and a log-normal pdf for Π (prior distribution). Every-
thing has been calculated for a source located at a central pixel
and without taking into account any information about the beam
and the data in a certain patch around the source. If we consider
a polarised source at the central pixel of an n-pixel patch, a beam
with a spatial profile τ(x), and values of Pi for the polarisation
measured at each pixel i = 1, . . . , n, we can write the following
expression for the conditional pdf of P0 given the Pi values at
the different pixels:

f (P0|Pi) ∝ exp
− (

log P0 − µ1
)2

2σ2
Π

 1
P0

×
∏

i

exp
−P2

0

τ2
i

2σ2
i

 I0

P0
Piτi

σ2
i

 . (6)

Here Πi is the product symbol, τi is the profile at each pixel,
and σi is the noise dispersion (it could be different from pixel
to pixel). We took the natural logarithm from the right-hand side
and changed sign, this is minus the log-posterior of the distribu-
tion, save constant terms. In this way, we obtained a simplified
expression which we later minimised to find the estimator that
makes the posterior distribution maximum

− log f (P0|Pi) =

(
log P0 − µ1

)2

2σ2
Π

+ log (P0) + P2
0z

−
∑

i

log I0
[
P0 yi

]
+ K (7)

with

z =
∑

i

τ2
i

2σ2
i

(8)

and

yi =
Piτi

σ2
i

, (9)
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and where K is a constant term that encloses the proportionality
terms not directly included in Eq. (7). If we differentiate with
respect to P and equate to zero, the estimator P̂0 satisfies

log P̂0 − µ1

P̂0σ
2
Π

+
1
P̂0

+ 2P̂0z −
∑

i

I1

[
P̂0yi

]
I0

[
P̂0yi

] yi = 0, (10)

with I1 being the modified Bessel function of order one. On the
other hand, in Argüeso et al. (2009), the FF method was shown
to perform better than the one derived from the Rice distribu-
tion. The FF calculates the square root of the sum of the squares
of the maps in Q and U to which a matched filter has been previ-
ously applied. This method is just a maximisation of the condi-
tional probability of the data Qi, Ui given the source polarisation
Q0, U0, assuming that the noise is Gaussian with zero mean and
independent for each pixel

f (Qi,Ui|Q0,U0)=
∏

i

exp

 (Qi − Q0τi)2

2σ2
Qi

+
(Ui − U0τi)2

2σ2
Ui

 . (11)

If we also assume that P0 follows a log-normal pdf and the
polarisation angle distribution is uniform, we can combine the
previous formula with the prior distribution of Q0,U0 and write,
by applying Bayes’ theorem, minus the log-posterior of Q0, U0
given the data Qi, Ui

− log f (Q0,U0|Qi,Ui) =

(
log

√
Q2

0 + U2
0 − µ1

)2

2σ2
Π

+ log
(
Q2

0 + U2
0

)
+

∑
i

(Qi − Q0τi)2

2σ2
Qi

+
∑

i

(Ui − U0τi)2

2σ2
Ui

+ K. (12)

This expression could be very easily generalised, allowing even
the treatment of correlations between the noise in different pix-
els. In that case, Eq. (12) can be written as

− log f (Q0,U0|Qi,Ui) =

(
log

√
Q2

0 + U2
0 − µ1

)2

2σ2
Π

+ log
(
Q2

0 + U2
0

)
+

1
2

∑
k

(Qk − Q0τk)t P−1
Q,k (Qk − Q0τk)

+
1
2

∑
k

(Uk − U0τk)t P−1
U,k (Uk − U0τk)

+ K, (13)

where the subindex k refers to the Fourier wave vector (or, for
the case of spherical data, the appropriate spherical harmonic)
and Px,k is the power spectrum (or angular power spectrum) of
the noise for the Stokes parameter x. This formula is expressed
in Fourier space for the sake of computational efficiency, but it
could also be expressed in real space by means of the correla-
tion matrix of the noise. In Eq. (13), it is clear that the third and
fourth terms on the right side of the equation are analogous to the
matched filter on the Q and U maps, which in turn are the solu-
tion of a maximum likelihood estimator (MLE). The first term

adds the prior information, whereas the second term acts as a
penalty for large values of the estimated polarisation, and finally
the last term is a constant that is irrelevant for the solution.

Now we can obtain the estimators Q̂0 and Û0 that minimise
the previous expression. Finally, we find

P̂0 =

√
Q̂2

0 + Û2
0 (14)

as our estimator of P0. In all of these formulas, we have not con-
sidered the effect of the circular polarisation, V . As mentioned
in the introduction, this effect is very small and can be neglected
in general. At any rate, the generalisation of the Rice and FF
methods to include circular polarisation has been presented in
Argüeso et al. (2011). However, in order to extend our Bayesian
methods to this case, we would have to use a prior distribution
for V which is not known yet.

To sum up the previous paragraphs: We have presented
four possible estimators of P0, the old ones are the Rice
method and the FF (Argüeso et al. 2009; López-Caniego et al.
2009; Herranz et al. 2012; Planck Collaboration XXVI 2016),
and the new ones, obtained by minimising the right-hand sides
of Eqs. (7) and (12) or (13), which we call the Bayesian Rice
method and the Bayesian FF method, respectively. These new
methods incorporate, in a natural way, our information about the
source polarisation distribution. The FF and Rice methods are
implemented by minimising Eqs. (7) and (12)–(13) without the
first two terms, which come from the Bayesian prior.

3. Simulations

3.1. White noise

As a first test bed to assess the performance of the Bayesian
techniques, we ran 10 000 simulations using only white noise as
background for simulated sources. Table 1 shows the simulation
parameters for these simulations; the pixel size, beam full width
half maximum (FWHM), and white noise root mean square
(rms) emulate those of the QUIJOTE (Rubiño-Martín et al.
2010, 2012; Génova-Santos et al. 2015; López-Caniego 2016)
experiment wide survey at 11 GHz (Rubino et al. 2021). We used
the same simulation parameters for the full sky simulations,
which are discussed in Sect. 3.2.

For these white noise simulations, we directly created flat
images with uncorrelated Gaussian noise and at the centre we
injected a point source with the FWHM listed in Table 1, a given
flux density S 0, and polarisation fraction Π randomly drawn
from the log-normal distribution Eq. (2) with the mean and stan-
dard deviation values 〈Π〉 and σΠ described in Table 1. We sim-
ulated the intensities of S 0 in ten logarithmically spaced values
between 0.1 and 100 Jy. In this way, we obtained a sample of
sources from moderately faint to extra bright (and, since the
polarisation fraction follows distribution Eq. (2) with average
〈Π〉 = 0.02, values of P from below 1 mJy to a few tens of
Janskys).

3.2. Full sky simulations

In order to assess the performance of our Bayesian techniques
under realistic conditions, we used realistic simulations of the
QUIJOTE experiment wide survey (Rubino et al. 2021). The
QUIJOTE wide survey is observing approximately half the
sky at 11, 13, 17, and 19 GHz. These simulations have been
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Table 1. Simulation parameters used for this work.

Frequency (GHz) 11
FWHM (degrees) 0.85
Nside parameter 246
Pixel resolution (arcmin) 13.74
White noise rms (Jy) 0.386
〈Π〉 0.02
σΠ 1.0

produced thanks to the EU RADIOFOREGROUNDS project4,
but they are not yet available publicly. The simulations make
use of the Planck Sky Model (PSM, Delabrouille et al. 2013),
a global representation of the multi-component sky at frequen-
cies ranging from 1 GHz to 1 THz that summarises, in a syn-
thetic way, as much of our present knowledge of the gigahertz
sky as possible. The PSM is a public code5 developed mostly
by members of the Planck collaboration as a simulation tool
for Planck activities and it makes it possible to simulate the
sky in total intensity and the Q, U Stokes parameters for any
experimental configuration in the gigahertz range. For this work,
we chose to simulate the QUIJOTE wide survey at 11 GHz.
Figures 1 and 2 show the full Q Stokes wide survey simulated at
11 GHz and the simulated QUIJOTE instrumental noise for the
same Stokes parameter, area, and frequency. Table 1 indicates
the main parameters used for this simulation.

Formula (13) could be applied to the whole sky, but since
the statistical properties of the foregrounds vary strongly with
Galactic latitude, we preferred to apply the Bayesian estimator
locally. In order to test the method, we computed Eq. (13) on
flat sky patches, projecting the HEALPix6 simulations described
above on 64×64 pixel (that is, a 14.658×14.658 square degrees
area) planar images.

We ran the estimator on 2000 flat patches as described above.
In order to study the effect of the level Galactic contamination,
we divided the sky in two areas: 10 000 simulations within a
‘Galactic’ band with a Galactic latitude of |b| ≤ 10◦ and 10 000
within an external region with |b| > 10◦. The centre sky coor-
dinate of each patch was chosen randomly, according to these
latitude intervals and inside the simulated wide survey observed
area (see Figs. 1 and 2). For each patch, at the centre, we injected
a point source with the FWHM listed in Table 1, a given flux
density S 0, and polarisation fraction Π randomly drawn from
the log-normal distribution Eq. (2) with the mean and standard
deviation values 〈Π〉 and σΠ described in Table 1. It is important
to note that the PSM simulations already contain resolved and
unresolved polarised point sources apart from the synthetic test
sources we are injecting at the central position of each simulated
patch. Figure 3 shows the Q and U Stokes parameters for one
of our simulations. We simulated intensities of S 0 in ten loga-

4 The RADIOFOREGROUNDS project aims to combine two unique
datasets, the nine Planck all-sky (30–857 GHz) maps and the four QUI-
JOTE Northern sky (10–20 GHz) maps, to provide the best possible
characterisation of the physical properties of polarised emissions in the
microwave domain, together with an unprecedentedly thorough descrip-
tion of the intensity signal. This legacy information will be essential
for future sub-orbital or satellite experiments. See more information in
http://www.radioforegrounds.eu/
5 http://www.apc.univ-paris7.fr/~delabrou/PSM/psm.
html
6 Hierarchical Equal Area isoLatitude Pixelation of a sphere, http:
//healpix.sf.net.

rithmically spaced values between 0.1 and 100 Jy (that is, 200
sources–100 of them in the band, 100 of them outside it– with
S 0 = 0.1 Jy, 200 with S 0 = 0.2154 Jy, and so on). In this way,
we obtained a sample of sources from moderately faint to extra
bright (and, since the polarisation fraction follows distribution
Eq. (2) with average 〈Π〉 = 0.02, values of P from below 1 mJy
to a few tens of Janskys).

4. Results

4.1. White noise

In all the cases analysed with the white noise simulations, the
performance of the Bayesian FF at estimating the source polari-
sation is better than that of the Bayesian Rice method. This was
also the case for their non-Bayesian counterparts (Argüeso et al.
2009, etc.). Due to this and in also taking into account that the
generalisation of the Bayesian Rice method to full-sky simu-
lations is far from trivial7, from now on, we only compare the
Bayesian FF and the FF techniques.

The left panel of Fig. 4 shows the estimation of the polarised
flux density for the 10 000 white noise simulations. The results
have been binned into eleven logarithmically spaced intervals in
input P0. In blue, we show the results from the Bayesian esti-
mator Eq. (13). The error bars show the 68.27% intervals of the
corresponding empirical distributions. The filled circles indicate
the median value of the distribution of results; the dots indi-
cate the average value of the distribution. For comparison, the
results of a MLE, which correspond to the third and fourth terms
of Eq. (13), are shown in orange. The red dotted line shows
the P = P0 line. The MLE is equivalent to the FF technique
(Argüeso et al. 2009; López-Caniego et al. 2009; Herranz et al.
2012). Both the Bayesian FF and the MLE estimator work well
for highly polarised sources (P0 & 0.5 Jy). For input polarisa-
tion levels below ∼0.2 Jy (which is approximately the rms of the
filtered noise of the simulations), however, the MLE reaches a
plateau: It is naturally limited by the level filtered noise. The
Bayesian estimator, on the contrary, uses the a priori information
on the Π distribution and the knowledge of the source flux den-
sity S to predict lower P values. As a matter of fact, the Bayesian
FF tends to overcompensate and predict, for the lower end of val-
ues of the input P0, polarised fluxes Pest ∼ 0.2P0. To see why this
happens, we carried out a short theoretical calculation based on
Eq. (12). The first part of Eq. (12) as a function of P0 is written
below:

− log f (Q0,U0/Qi,Ui) = (log P0 − log(ΠmedS 0))2/2σ2
Π

+ 2 log (P0) + Σi
(Qi − Q0τi)2

2σ2
i

+ Σi
(Ui − U0τi)2

2σ2
i

+ K. (15)

If we define

Σi
Qiτi

σ2
i

= P1 cos φ1,Q0 = P0 cos φ (16)

and

Σi
Uiτi

σ2
i

= P1 sin φ1,U0 = P0 sin φ, (17)

7 For spatially correlated noise, such as the polarisation produced by
Galactic foregrounds, the distribution of P is not Ricean anymore.
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-13.9926 22.4137

Fig. 1. Q-Stokes simulated QUIJOTE wide survey sky at 11 GHz. The false colour bar is expressed in Janskys.

the previous formula can be expressed in terms of P0, P1 and the
polarisation angles

− log f (Q0,U0/Qi,Ui) = (log P0 − log(ΠmedS 0))2/2σ2
Π

+ 2 log (P0) − P0P1 cos (φ − φ1)

+ P2
0 Σi

τ2
i

2σ2
i

+ K2 (18)

with

Σi
Q2

i + U2
i

2σ2
i

+ K = K2. (19)

Taking the partial derivatives of Eq. (18) with respect to P0 and
φ and equating them to zero, we obtain the estimators P̂0 and φ̂
that minimise minus the log-posterior. It can be easily seen that
φ̂ = φ1 and P̂0 is the solution of the following equation:

(log P̂0 − log(ΠmedS 0))/σ2
Π + 2 − P̂0 P1 + P̂0

2
Σi
τ2

i

σ2
i

= 0. (20)

This equation is very interesting: If we assume that P̂0 P1 � 1

and P̂0
2

Σi
τ2

i

σ2
i

� 1, that is, the source polarisation is much lower

than the noise, the estimation is dominated by the Bayesian prior
and in neglecting the last two terms in Eq. (20), we find a con-
stant value for the estimator, independently of the data,

P̂0 = Πmed S 0 e−2σ2
π , (21)

for a lognormal distribution and

Πmed = 〈Π〉 exp
(
−σ2

Π/2
)
. (22)

Taking into account the values of 〈Π〉 and σΠ given in Table 1,
Πmed = 0.012 and we obtain

P̂0 = 0.00164 S 0. (23)

In order to check these theoretical results, we carried out 10 000
simulations with S 0 = 1 Jy. In this case, the noise, σ = 0.386 Jy,
is much higher than the source polarisation. We find, for all
our simulations, the estimated value 〈P̂0〉 = 0.00166 ± 0.00002,
which is compatible with the calculation above. Though the esti-
mator is constant in this case, this value is closer to the real value
than that obtained by using the matched filter, which is com-
pletely dominated by the noise.

For higher values of S 0, for example S 0 = 10 Jy, there
are around 5000 simulations, corresponding to the lower polar-
isations, that produce an estimator close to the default value
0.016−0.020 Jy. For higher values of the real polarisation, there
is a combination of the prior and the matched filter terms in the
solution of (20). At any rate, the performance of the Bayesian FF
is better than that of the plain FF.

The right panel of Fig. 4 shows the polarised flux estimation
error8 as a function of the input flux density (temperature) of the
source S 0. For low flux densities, the figure shows both the sys-
tematic overestimation of the MLE, due to the noise limit, and
the underestimation of the Bayesian FF estimator due to the rea-
sons discussed above. In absolute terms, the statistical error of
the MLE is much larger than that of the Bayesian FF estimator
in the low flux density regime. There is an interesting interval
at intermediate flux densities (∼10 Jy) at which the errors of the
MLE and Bayesian FF estimator are of the same order, but in
opposite directions. The Bayesian estimator seems to reach a

8 Defined as P0 − P̂0, where P0 is the input value and P̂0 is the esti-
mated value of the polarisation of the source either through the Bayesian
method or through the MLE.
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-13.9934 7.84179

Fig. 2. Q-Stokes simulated QUIJOTE wide survey instrumental noise at 11 GHz. The false colour bar is expressed in Janskys. The non-uniformity
of the noise reflects the non-uniform sky scanning strategy of the telescope.
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Fig. 3. Projected sky patches for one of our simulations. Map units are expressed in Janskys. (a) Stokes Q. (b) Stokes U.

plateau (i.e. is noise-limited) around P0 ∼ 10 mJy, a, order of
magnitude below in polarised flux than the MLE.

Figure 5 shows the absolute polarisation angle error,

|∆φ| = |φ0 − φ̂0|, (24)

where φ0 and φ̂0 are the input and estimated polarisation angles
(in degrees), as a function of the input polarisation of the source
P0. The figure shows that there is little difference between the
Galactic and extragalactic areas, and between the Bayesian esti-
mator and the MLE. This is not a surprise, since the priors in
Eq. (13) are constant with respect to φ0, that is, the Bayesian
estimator and the MLE should perform similarly, as is the case.

4.2. Full sky simulations

Figure 6 shows the estimation of the polarised flux density for
firstly the 10 000 ‘Galactic’ sky patches (|b| ≤ 10◦) and secondly
the 10 000 ‘extragalactic’ (|b| > 10◦) simulated QUIJOTE sky
patches. The results have been binned into eleven logarithmi-
cally spaced intervals in input P0. In blue, we show the results
from the Bayesian estimator Eq. (13). The error bars show the
68.27% intervals of the corresponding empirical distributions.
For comparison, the results of a MLE, which correspond to the
third and fourths terms of Eq. (13), are shown in orange. The
MLE is equivalent to the FF technique (Argüeso et al. 2009;
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Fig. 4. Left: binned estimates of the polarised flux density as a function of binned input P0, in Janskys, for the set of 10 000 simulated white noise
patches. Right: error in the estimation P0 − P̂0 as a function of binned input S 0 (Jy) for the same set of simulations. Bayesian estimations appear in
blue, whereas maximum likelihood estimations are shown with an orange colour. Error bars show the 68.27% interval of the distribution of results
in each case. Filled circles indicate the median of the distribution; the diamonds (for the MLE) and crosses (for the Bayesian estimator) indicate
the average value of the distribution.
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Fig. 5. Binned estimates of |∆φ| = |φ0 − φ̂0| as a function of binned
input P0, in Janskys, for the set of 10 000 simulated white noise images.
Bayesian estimations are marked with blue crosses and error bars,
whereas maximum likelihood estimations are shown with orange dia-
monds and error bars. The median values are indicated by means of
large blue filled circles (Bayesian estimator) and small orange squares
(MLE).

López-Caniego et al. 2009; Herranz et al. 2012). As it happened
in the case of the white noise simulations (Sect. 4.1), for low
flux density sources the MLE estimator reaches a plateau domi-
nated by the noise level (higher for Galactic than for extragalac-
tic sources). The Bayesian estimator reaches a similar plateau
at much lower polarised fluxes, again in the ∼10 mJy regime
instead of the ∼100 mJy regime of the MLE. Please note, how-
ever, that the distribution of the estimated P̂0 by means of
the Bayesian estimator becomes more and more skewed as P0
decreases9.

9 This can be quickly seen by the growing differences between the
median and the average values of the distribution, as shown in the figure.

Figure 7 shows the error of the estimation of P as a function
of the input flux density of the sources (in Janskys). As in the
case of white noise, the MLE estimator tends to overestimate the
polarised flux of faint sources, whereas the Bayesian FF tends
to underestimate it. This error is a systematic bias that tends to
a constant value in relative terms, but decreases to zero Janskys
in absolute terms for S 0 → 0. Error bars are smaller for extra-
galactic sources than for Galactic sources, which are embedded
in more intense foreground emission. Figures 8 and 9 show the
normalised histograms of the difference ∆P between the input
polarisation P0 and the estimated polarisation P,

∆P = P0 − P̂0, (25)

for eleven different values of the total (Stokes I) flux density
S 0. ‘Galactic’ sources are shown in Fig. 8 and ‘extragalactic’
sources are shown in Fig. 9. The estimation P̂0 has been obtained
with the BFF method introduced in this paper (in blue) and the
MLE (in red). For bright sources (S 0 > 10 Jy), the histograms
are approximately symmetric and centred around ∆P = 0, but
for fainter sources the MLE histograms are skewed to the left,
showing the same kind of overestimation already observed in
Fig. 6. The histograms for the Bayesian estimator, however, are
skewed to the right but much narrower than the MLE histograms,
which indicates that the Bayesian estimator predicts the polari-
sation of a source with a smaller margin of error. Both types
of error, MLE-overestimation and Bayesian FF-underestimation,
must be dealt with in CMB polarisation experiments, but the
amount of bias is significantly smaller for the Bayesian FF
estimator.

Finally, Fig. 10 shows the absolute polarisation angle error
as a function of the input polarisation P0. The figure shows that
there is little difference between the Galactic and extragalactic
areas and between the Bayesian estimator and the MLE. This
is not a surprise since the priors in Eq. (13) are constant with
respect to φ0, that is, the Bayesian estimator and the MLE should
perform similarly, as is the case.
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Fig. 6. Binned estimates of the polarised flux density as a function of binned input P0, in Janskys, for the set of 10 000 simulated QUIJOTE sky
patches with |b| ≤ 10◦ (left) and the set of 10 000 simulated QUIJOTE sky patches with |b| > 10◦ (right) at 11 GHz. Bayesian estimations appear in
blue, whereas maximum likelihood estimations are shown with an orange colour. Error bars show the 68.27% interval of the distribution of results
in each case. Filled circles indicate the median of the distribution; the diamonds (for the MLE) and crosses (for the Bayesian estimator) indicate
the average value of the distribution.
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Fig. 7. Error in the estimation P0 − P̂0 (Jy) as a function of binned input S 0 (Jy) for the set of 10 000 simulated QUIJOTE sky patches with
|b| ≤ 10◦ (left) and the set of 10 000 simulated QUIJOTE sky patches with |b| > 10◦ (right) at 11 GHz. Bayesian estimations appear in blue,
whereas maximum likelihood estimations are shown with an orange colour. Error bars show the 68.27% interval of the distribution of results in
each case. Filled circles indicate the median of the distribution; the diamonds (for the MLE) and crosses (for the Bayesian estimator) indicate the
average value of the distribution.

4.3. A note on the robustness of the Bayesian estimator

Every time some prior information is used in the Bayesian
framework, one inevitably questions the effect a wrong guess
has on the prior in the estimation. In order to shed some light
on this, we re-analysed the one hundred simulations of ‘extra-
galactic’ sources with a flux density of S 0 = 10 Jy10. Instead
of using the correct value of the median polarisation fraction
Πmed in Eq. (13), we used a biased parameter Πb

med = b Πmed
with b = [0.5, 0.6, . . . , 2.0], that is, we tested what happens if
our guess for the median polarisation fraction is wrong by a
10 We chose this particular flux density value because according to
Fig. 9 it marks the flux density for which the Bayesian estimator begins
to outperform the MLE.

factor from 50% to 200%. Figure 11 shows the average estima-
tion error P0 − P̂0 as a function of the bias factor b. Error bars
show the 68.27% intervals of the corresponding empirical distri-
butions. The figure shows that the average error of the Bayesian
estimator varies smoothly with the bias in the prior. For com-
parison, for the same simulations, the MLE produces a (bias
independent, as the maximum likelihood estimator does not use
prior information) value for the error P0 − P̂0 = −0.22 ± 0.12,
which is larger than the Bayesian estimation (for this particu-
lar value of S 0) even when the prior is wrong by a factor of
two.

Another potential source of bias is the uncertainty on the true
flux density of the source. The estimators in Eqs. (12) and (13)
depend implicitly on an a priori knowledge of the source flux
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Fig. 8. Normalised histogram of the difference ∆P between the input polarisation P0 and the estimated polarisation for the Bayesian estimator
(blue, /) and the MLE (red, \) for sources located within the Galactic band |b| ≤ 10◦, and for nine different values of the input total flux density S 0.

density S 0 through the factor µ1 = µ + log(S 0). In the previous
tests, we have assumed that S 0 is known with arbitrary preci-
sion, but in practice this is not the case. In a real experiment, one
expects to know some reasonable estimation of Ŝ 0 of the true
flux density of the source. In a typical CMB experiment setting,
the difference between S 0 and Ŝ 0 is relatively small (at least in
comparison with the relative difference between P0 and P̂0), but
not zero. The uncertainty on the source flux density can bias the
estimators Eqs. (12) and (13) even if the distribution of Ŝ 0 is
symmetric around S 0, as S 0 enters the estimators in a non-linear
fashion. Moreover, one expects the uncertainty in S to increase
the statistical error of the estimators.

In order to test the effect of the uncertainty on S on our
Bayesian estimator, we conducted a new batch of 10 000 sim-
ulations in the same fashion as described in Sect. 4.2. The anal-
ysis followed the same pipeline as described above, but every
time we computed the estimator Eq. (13), we introduced a ran-
dom photometric error in S 0. These photometric errors fol-
low a Gaussian distribution of standard deviation σ = 0.3 Jy,

which is a little smaller than the QUIJOTE simulation noise rms
level11.

Figure 12 shows the average error of the estimation of the
polarisation of our simulated sources comparing the two cases:
if the source flux density S 0 is perfectly known in advance (blue
dots and error bars) or if a 0.3 Jy photometric uncertainty is
present in the analysis (orange dots and bars, slightly displaced
to the right for the sake of clarity). Galactic and extragalactic
cases (as defined above) are shown in the left and right panels,
respectively. The effect of a ∼0.3 Jy photometric error on the flux
density of the sources is negligible in our simulated experimen-
tal setting. This does not come as a surprise since a ∼0.3 Jy vari-
ation in S 0 produces only a ∼10% change in the µ1 term that
11 We assume that the rms of the photometric errors has been low-
ered by means of some filtering scheme, such as a matched filter or a
Mexican hat wavelet, or any other suitable signal processing technique.
Then the ∼0.3 Jy uncertainty becomes a more realistic approximation
of error in the determination the flux density of compact sources in the
QUIJOTE wide survey.
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Fig. 9. Normalised histogram of the difference ∆P between the input polarisation P0 and the estimated polarisation for the Bayesian estimator
(blue, /) and the MLE (red, \) for sources located outside the Galactic band |b| > 10◦, and for nine different values of the input total flux density
S 0.

appears in Eqs. (12) and (13) in the worst case (1 Jy sources)12.
This discrepancy quickly decreases as S 0 grows. Moreover, the
rms around the mean 〈µ1〉 also decreases very quickly with S 0.
Therefore, we conclude that our Bayesian estimator is robust
against moderate uncertainties on the prior and the flux density
of the sources.

12 Moreover, the estimation of the polarisation is not given directly by
Eqs. (12) and (13), but by the minimisation of these functions. A small
variation in one of the terms of the functions does not necessarily mean
that the position of the minimum of the function changes in a noticeable
way. The non-linear way in which S 0 appears in these equations makes
it difficult to find an analytical expression of how an uncertainty in S 0
affects the minimisation. This question is better answered by simula-
tions, just as we have done in this section.

5. Conclusions

The estimation of the polarimetric properties of extragalactic
compact sources at microwave wavelengths will be very rele-
vant in the upcoming years. In this work, we have introduced
a Bayesian approach for the estimation of the polarised flux
density P of these kinds of sources. Following the recent
works by Massardi et al. (2013) and Galluzzi et al. (2017, 2019),
among others, we have proposed an analytical prior for the polar-
isation fraction of extragalactic radio sources, which takes the
form of a log-normal distribution whose parameters (median,
average, and variance values of the polarisation fraction) can
be constrained by the latest observational data. Using this prior,
we have proposed two MAP estimators of the polarisation
of a given source given observations of its Q and U Stokes
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ˆFig. 10. Binned estimates of |∆φ| = |φ0 − φ̂0| as a function of binned input P, in Janskys, for the set of 500 simulated QUIJOTE sky patches with
|b| ≤ 10◦ (left) and the set of 500 simulated QUIJOTE sky patches with |b| > 10◦ (right) at 11 GHz. Bayesian estimations are marked with blue
crosses, whereas maximum likelihood estimations are marked with orange diamonds. Median values are indicated with large blue filled circles
and small orange filled squares, respectively.

parameters. The first method works directly on the quadratic
combination P2 = Q2+U2, whereas the second method produces
individual estimators of the ground-truth values Q0 and U0 that
are then quadratically added to give an estimator of the ground-
truth polarisation P0 of the source. We have called these meth-
ods Bayesian Rice and BFF, respectively. Both can be consid-
ered as natural Bayesian extensions of the frequentist Neyman-
Pearson and standard FF methods introduced by Argüeso et al.
(2009). The standard FF is shown to be equal to the MLE for
P, whereas the BFF adds a number of additional terms to the
MLE, including the a priori information on the distribution of
the polarisation fraction. The BFF method can be easily accom-
modated to non-white noise and foregrounds. For this reason, we
have focused on this method in most of our paper. We have tested
the performance of the BFF method and compared it to that of
FF using two sets of simulations: polarised sources embedded in
Q and U white noise, and more realistic simulations that also
include polarised CMB and Galactic foreground emission. In
both cases, we have used the pixel and beam scales plus the noise
levels and sky coverage of the QUIJOTE experiment wide survey
(Rubino et al. 2021; Herranz et al. 2021) at 11 GHz. For the BFF,
we assumed that the flux density S 0 of the sources is perfectly
known. For highly polarised sources, the two methods yield the
same results, but for medium to low polarisations (P0 ≤ 400 mJy
in our simulations) the BFF gets more accurate estimations of the
polarisation of the sources. The FF gets noise-limited around a
polarisation flux P0 ∼ 500 mJy, whereas the BFF allows us
to reach polarised fluxes well below P0 ∼ 100 mJy before
becoming noise-limited itself. Both estimators are biased for low
polarisation (i.e. P0 . 500 mJy) sources: The BFF tends to
underestimate the polarisation, whereas the standard FF over-
estimates the polarisation of these sources. In the case of the FF,
the bias is due to noise boosting of the signal (akin to Eddington
bias). In the case of the BFF, the bias is originated by the extra
terms in the estimator formula that come from the physical prior.
However, the absolute value of bias is significantly smaller for
the BFF than for the FF, especially for faint sources.

In the above discussion, we have assumed that the prior
describes the real distribution of polarisation of the sources
adequately and that the total flux density S 0 of each source
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Fig. 11. Error in the estimation of the total polarisation of a test source
with S 0 = 10 Jy as a function of the bias factor b (defined as Πb

med =
b Πmed) affecting the Bayesian prior on Πmed.

is perfectly known. However, information about the polarisa-
tion properties of extragalactic sources at microwave frequencies
above '10 GHz is still scarce. Moreover, for any given source,
S 0 is known with a certain degree of uncertainty due to instru-
mental noise, less-than-perfect modelling of the spectral energy
distribution of the source, and variability, among other possi-
ble causes. Towards the end of this work, we have tested the
robustness of the BFF estimator against moderate changes in the
prior parameters and realistic uncertainties in the flux density of
the sources. Our simulations indicate that assuming the wrong
prior has a mild effect on the Bayesian estimator. For exam-
ple, for a S 0 = 10 Jy source, a change by a factor of two in the
assumed median polarisation fraction of the sources introduces
errors or the order of .100 mJy in the estimation of P. Regard-
ing uncertainties in the flux density of the sources, we find that
non-catastrophic photometric error bars have a minimal impact
on the estimation of P.
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Fig. 12. Error in the estimation P−P0 (Jy), as a function of binned input S 0 (Jy), for the set of 10 000 simulated QUIJOTE sky patches with |b| ≤ 10◦
(left) and the set of 10 000 simulated QUIJOTE sky patches with |b| > 10◦ (right) at 11 GHz. Bayesian estimations for a perfect photometry of the
source total flux density S 0 appear in blue, whereas Bayesian estimations including a 0.3 Jy uncertainty in S 0 are shown in orange. Error bars show
the 68.27% interval of the distribution of results in each case. Filled circles indicate the median of the distribution, and dots indicate the average
value of the distribution. Orange points and lines have been slightly displaced to the right in order to make the figure more readable.

We therefore conclude that the Bayesian approach can signif-
icantly improve the estimation of the polarisation of extragalac-
tic radio sources in current and upcoming CMB polarisation
experiments. In an upcoming work, we will explore the exten-
sion of the Bayesian framework to the multi-frequency case.
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