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1 Introduction

Electromagnetic duality in four-dimensional maximal supergravity has provided a very rich

phenomenology as far as the existence of new gaugings and vacuum solutions are concerned.

The prototypical example is the dyonically-gauged SO(8) supergravity where the action of

electromagnetic duality on the gauging generates a one-parameter family of inequivalent

theories parameterised by a continuous parameter c ∈
[
0,
√

2− 1
]

[1]. Setting the param-

eter to c = 0 then the standard (electric) SO(8) supergravity of de Wit and Nicolai [2]

is recovered which is known to arise upon dimensional reduction of eleven-dimensional

supergravity on a seven-sphere S7. The various AdS4 vacua of the c = 0 theory [3] (see

also [4] for an updated encyclopedic reference) get generalised to one-parameter families

of vacua when turning on c and, more importantly, new and genuinely dyonic AdS4 vacua

also appear which do not have a well defined (electric) c→ 0 limit [1, 5–7]. Other types of

four-dimensional solutions, like domain-walls [8, 9] or black holes [10–12], have also been

investigated using instead a phase-like parameterisation ω = arg(1 + ic) ∈ [0, π/8] of the

electromagnetic deformation parameter. However, and despite the rich structure of new

solutions at c 6= 0, the question about the eleven-dimensional interpretation of the electro-

magnetic parameter c remains elusive and various no-go theorems have been stated against

the existence of such a higher dimensional origin [13, 14]. Also, for the new supersymmetric
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AdS4 vacua at c 6= 0, the holographic interpretation of the deformation parameter remains

obscure from the perspective of the AdS4/CFT3 correspondence.

Unlike for the SO(8) theory, much more is by now known about the dyonically-gauged

ISO(7) supergravity that arises from the reduction of massive IIA supergravity on a six-

sphere S6 [15]. In this case the electromagnetic deformation parameter is a discrete (on/off)

deformation, namely, it can be set to c = 0 or 1 without loss of generality [16]. Various

AdS4 [17–19], domain-wall [19, 20], and black hole [21–24] solutions have been constructed

which necessarily require a non-zero electromagnetic deformation parameter c. Within this

massive IIA context, the electromagnetic parameter is identified with the Romans mass

parameter F̂0 of the ten-dimensional theory [25], and has a holographic interpretation as

the Chern-Simons level k of a three-dimensional super-Chern-Simons dual theory [26].

The role of the electromagnetic deformation c has been much less investigated in the

context of type IIB supergravity. The relevant dyonically-gauged supergravity in this

case is the [SO(1, 1)× SO(6)] nR12 theory which arises from the reduction of type IIB

supergravity on the product R × S5 [27]. As for the ISO(7) theory, the electromagnetic

deformation is again a discrete (on/off) deformation, namely, c = 0 or 1 [16]. This four-

dimensional supergravity has been shown to contain various types of AdS4 vacua preserving

different amounts of supersymmetry as well as of residual gauge symmetry. In particular,

an N = 4 and SO(4) symmetric solution was reported in [28] and subsequently, in [27],

uplifted to a class of AdS4 × S1 × S5 S-fold backgrounds of type IIB supergravity using

the E7(7) exceptional field theory (E7(7)-EFT). These S-folds involve S-duality twists A(k)

(k ≥ 3) that induce SL(2,Z)IIB monodromies M(k) = −ST k of hyperbolic type along S1,

and can be systematically constructed as quotients of degenerate Janus-like solutions of

the type IIB theory [29, 30] where the string coupling gs diverges at infinity. Together with

the N = 4&SO(4) solution, additional N = 0&SO(6) [31] and N = 1&SU(3) [32] solutions

have been found and uplifted to similar S-fold backgrounds of type IIB supergravity with

hyperbolic monodromies in [32]. From a holographic perspective, these AdS4 vacua describe

new strongly coupled three-dimensional CFT’s, referred to as J-fold CFT’s in [33] (see

also [34, 35] and [36]), which are localised on interfaces of N = 4 super-Yang-Mills theory

(SYM) [37]. In the N = 4 case [33], a hyperbolic monodromy J = −ST k ∈ SL(2,Z)IIB

was shown to introduce a Chern-Simons level k in the dual J-fold CFT which, in turn, is

constructed from the T (U(N)) theory [38] upon suitable gauging of flavour symmetries. A

diagram illustrating this type IIB construction is depicted in figure 1.

On the other hand, a classification of interface SYM theories was performed in [39]

(see also [40]) in correspondence to the various amounts of supersymmetry, as well as the

largest possible global symmetry, preserved by the interface operators. Three supersymmet-

ric cases were identified: interfaces with N = 4&SO(4) symmetry, N = 2&SU(2)×U(1)

symmetry and N = 1&SU(3) symmetry. While the S-folds in [27] and [32] respectively

match the symmetries of the N = 4 and N = 1 cases, the gravity duals of the would be

N = 2 J-fold CFT’s localised on the interface with SU(2)×U(1) symmetry remain missing.

In this work we fill this gap and present a new family of AdS4×S1×S5 S-folds with N = 2

supersymmetry, SU(2)×U(1) symmetry and, as in the previous cases, involving S-duality

twists that induce monodromies of hyperbolic type along S1.
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D = 10

D = 4

D = 3

Type IIB & S-fold with AdS4 × S1 × S5 geometry

[SO(1, 1) × SO(6)] n R12

gauging with an AdS4 vacuum

N = 4 SYM

with a localised interface

J-fold CFT3

Reduction

on R× S5
Uplift method : E7(7)-EFT involving

hyperbolic twists A(k) along S1

AdS4/CFT
3

J ∈ SL(2,Z)IIB action

Figure 1. Type IIB S-folds with hyperbolic monodromies M(k) = −ST k along S1 and connection

with three-dimensional J-fold CFT’s.

The paper is organised as follows. In section 2 we perform a study of multi-parametric

families of AdS4 vacua in the [SO(1, 1)× SO(6)] nR12 maximal supergravity. We find four

families of vacua, one of them being N = 2 supersymmetric and containing a vacuum

with a residual symmetry enhancement to SU(2) × U(1). In section 3, by implementing

a generalised Scherk-Schwarz (S-S) ansatz in E7(7)-EFT, we uplift such an AdS4 vacuum

to a class of AdS4 × S1 × S5 N = 2 S-folds of type IIB supergravity with SU(2) × U(1)

symmetry and a non-trivial hyperbolic monodromy along S1. In section 4 we present our

conclusions and discuss future directions.

2 AdS4 vacua of [SO(1, 1)× SO(6)] n R12 maximal supergravity

We continue the study of AdS4 vacua initiated in [31], and further investigated in [28]

and [32], for the dyonically-gauged maximal supergravity with non-abelian gauge group

G = [SO(1, 1)× SO(6)] nR12 . (2.1)

We will show how the AdS4 vacua of [28, 31, 32] actually correspond to very special points

(featuring residual symmetry enhancements) within multi-parametric families of solutions.

Each of these families preserves a given amount supersymmetry, namely, N = 0, 1, 2 or 4.

More specifically we find:

• A three-parameter family of N = 0&SU(2) symmetric AdS4 vacua with symmetry

enhancements to SU(2)×U(1)2, SU(3)×U(1) and SO(6) ∼ SU(4) at specific values

of the three arbitrary parameters.

• A two-parameter family of N = 1&U(1)2 symmetric AdS4 vacua with symmetry

enhancements to SU(2) × U(1) and SU(3) at specific values of the two arbitrary

parameters.

• A one-parameter family of N = 2&U(1)2 symmetric AdS4 vacua with a symmetry

enhancement to SU(2)×U(1) at a special value of the arbitrary parameter.

• A single N = 4&SO(4) symmetric AdS4 vacuum.
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TheN = 2 family of AdS4 vacua is new and we will uplift the solution with SU(2)×U(1)

enhanced residual symmetry to a new and analytic family of S-fold backgrounds of type IIB

supergravity in section 3.

2.1 The N = 8 theory: gauging and scalar potential

We follow the conventions and notation of [32], which slightly differ from those of [27], to

describe the dyonically-gauged maximal supergravity with gauge group G in (2.1). For

the purposes of this work, i.e. the study of AdS4 vacua, we set to zero all the vector and

(auxiliary [41]) tensor fields of the theory, so that the bosonic Lagrangian reduces to the

following one

LN=8 =

(
R

2
− VN=8

)
∗ 1 +

1

96
Tr
(
dM ∧ ∗dM−1

)
, (2.2)

which describes the scalar fields MMN coupled to Einstein gravity in the presence of a scalar

potential. The scalar fields serve as coordinates on the coset space of maximal supergravity

MMN = VV t ∈
E7(7)

SU(8)
, (2.3)

with M = 1, . . . , 56 being a fundamental index of E7(7). The coset representative V is

constructed by direct exponentiation of the 70 non-compact generators tA
B (with tA

A = 0)

and tABCD = t[ABCD] generators of E7(7) in the SL(8) basis.1 The scalar potential in (2.2),

which survives our truncation to the Einstein-scalar sector, is induced by the gauging of

the group G in (2.1) within the maximal theory and has the following general form:

VN=8 =
g2

672
XMN

RXPQ
SMMP

(
MNQMRS + 7δQRδ

N
S

)
, (2.4)

which depends on the gauge coupling g, the scalar matrix MMN (and its inverse MMN ) and

on a constant embedding tensor XMN
P living in the 912 of E7(7) [43]. This tensor codifies

how the gauge group G is embedded into the E7(7) duality group of maximal supergravity.

Moreover, it also specifies the gauge connection which involves both electric and magnetic

vector fields transforming under the Sp(56) group of electromagnetic transformations of

the theory (for reviews see [44, 45]).

Under SL(8) ⊂ E7(7) the index M decomposes into antisymmetric pairs M = ([AB],
[AB] )

where A = 1, . . . , 8 denotes a fundamental index of SL(8). This implies that, for gaugings of

subgroups of SL(8), the non-vanishing electric and magnetic components of the embedding

tensor are given by [31]

electric : X[AB][CD]
[EF ] = −X [EF ]

[AB] [CD] = −8δ
[E
[AηB][Cδ

F ]
D],

magnetic : X
[AB] [EF ]

[CD] = −X [AB][EF ]
[CD] = −8δ

[A
[C η̃

B][Eδ
F ]
D],

(2.5)

in terms of two symmetric matrices ηAB and η̃AB. For the gauging of G ⊂ SL(8) in (2.1)

these are

ηAB = diag(0, I6, 0) and η̃AB = c diag(−1, 06 , 1) . (2.6)

1We adopt the conventions in the appendix of [42] for the explicit form of the tA
B and tABCD matrices.
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As stated in the introduction, the magnetic part of the embedding tensor in (2.5) allows

for an (on/off) electromagnetic parameter c so that η̃AB ∝ c.

2.2 Z3
2 invariant sector

In order to efficiently search for extrema of the scalar potential (2.4), we will now construct

a Z3
2 invariant sector of the [SO(1, 1)× SO(6)] nR12 maximal supergravity. This sector

can be recast as a minimal N = 1 supergravity coupled to seven chiral multiplets zi with

i = 1, . . . , 7. The same invariant sector has recently been explored in the dyonically-gauged

ISO(7) theory [19] and the purely electric SO(8) theory [46], and it originally appeared in

the context of type II orientifold compactifications with generalised fluxes [47, 48].

To describe this sector of the maximal theory, we first focus on a four-element Klein

subgroup of SL(8). Its action on the fundamental index A is given by

Z(1)
2 : (x1, x2, x3, x4, x5, x6, x7, x8)→ (x1, x2, x3,−x4,−x5,−x6,−x7, x8) ,

Z(2)
2 : (x1, x2, x3, x4, x5, x6, x7, x8)→ (x1,−x2,−x3, x4, x5,−x6,−x7, x8) ,

(2.7)

together with the remaining generators I and Z(1)
2 Z(2)

2 . In addition, we will also require

invariance under an extra Z∗2 generator acting as

Z∗2 : (x1, x2, x3, x4, x5, x6, x7, x8)→ (x1,−x2, x3,−x4, x5,−x6, x7,−x8) . (2.8)

The resulting Z3
2 invariant sector describes N = 1 supergravity coupled to seven chiral

multiplets (and no vector multiplets)

zi = −χi + ie−ϕi with i = 1, . . . , 7 . (2.9)

The fourteen real spinless fields are associated with generators tA
B (scalars) and t[ABCD]

(pseudo-scalars) of E7(7) in the SL(8) basis. The former have associated generators of

the form

gϕ1 = −t11 − t22 − t33 + t4
4 + t5

5 + t6
6 + t7

7 − t88,

gϕ2 = −t11 + t2
2 + t3

3 − t44 − t55 + t6
6 + t7

7 − t88,

gϕ3 = −t11 + t2
2 + t3

3 + t4
4 + t5

5 − t66 − t77 − t88,

gϕ4 = t1
1 − t22 + t3

3 + t4
4 − t55 + t6

6 − t77 − t88,

gϕ5 = t1
1 + t2

2 − t33 − t44 + t5
5 + t6

6 − t77 − t88,

gϕ6 = t1
1 + t2

2 − t33 + t4
4 − t55 − t66 + t7

7 − t88,

gϕ7 = t1
1 − t22 + t3

3 − t44 + t5
5 − t66 + t7

7 − t88,

(2.10)

whereas the latter correspond with generators given by

gχ1 = t1238, gχ4 = t2578,

gχ2 = t1458, gχ5 = t4738, gχ7 = t8246 .

gχ3 = t1678, gχ6 = t6358,

(2.11)
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Exponentiating (2.10) and (2.11) with coefficients ϕi and χi as

V = Exp

[
−12

7∑
i=1

χigχi

]
Exp

[
1

4

7∑
i=1

ϕigϕi

]
, (2.12)

yields a parameterisation of an MMN = VVt ∈ [SL(2)/SO(2)]7 subspace of the coset space

in (2.3). The kinetic terms in the resulting N = 1 sector follow from (2.2) and (2.12), and

are given by

Lkin = −1

4

7∑
i=1

[
(∂ϕi)

2 + e2ϕi(∂χi)
2
]
. (2.13)

These match the standard kinetic terms Lkin = −(∂2
zi,z̄jK)dzi ∧ ∗dz̄j for a set of seven

chiral fields zi with Kähler potential

K = −
7∑
i=1

log[−i(zi − z̄i)] . (2.14)

Lastly, when restricted to the Z3
2 invariant sector entering (2.12), the scalar potential, as

computed from (2.4), can be recovered from a holomorphic superpotential

W = 2g
[
z1z5z6 + z2z4z6 + z3z4z5 + (z1z4 + z2z5 + z3z6)z7

]
+ 2gc(1− z4z5z6z7) , (2.15)

using the standard N = 1 formula

VN=1 = eK
[
Kziz̄jDziWDz̄jW̄ − 3WW̄

]
, (2.16)

where DziW ≡ ∂ziW + (∂ziK)W is the Kähler derivative and Kziz̄j is the inverse of the

Kähler metric Kziz̄j ≡ ∂2
zi,z̄jK. Note that only the last term in the superpotential (2.15)

turns out to be sensitive to the electromagnetic parameter c.

2.3 New families of AdS4 vacua

A thorough study of the structure of extrema of the scalar potential (2.4), restricted to

the Z3
2 invariant sector, reveals a rich structure of (fairly) symmetric AdS4 vacua. We find

four families of vacua preserving N = 0, 1, 2 or 4 supersymmetry as well as various resid-

ual gauge symmetries ranging from U(1)2 to SO(6) ∼ SU(4). The three supersymmetric

families are also supersymmetric within the N = 1 model with seven chirals presented in

the previous section, and therefore satisfy the F-flatness conditions

DziW = 0 , (2.17)

that follow from the superpotential (2.15) and Kähler potential (2.14). Importantly, all the

AdS4 vacua we will present in this section are genuinely dyonic, namely, they disappear if

taking the limit c→ 0 to a purely electric gauging of G in (2.1).
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2.3.1 N = 0 vacua with SU(2) → SU(2) × U(1)2 → SU(3) × U(1) → SO(6)

symmetry

There is a three-parameter family of N = 0 solutions that preserves SU(2) and is located at

z1,2,3 = c

(
−χ1,2,3 + i

1√
2

)
and z4 = z5 = z6 = z7 = i , (2.18)

with χ1,2,3 being arbitrary (real) parameters. This family of solutions has a vacuum energy

given by

V0 = −2
√

2g2c−1 , (2.19)

and a spectrum of normalised scalar masses of the form

m2L2 = 6(×2) , −3(×2) , 0(×28) ,

− 3

4
+

3

2
χ2(×2) ,

− 3

4
+

3

2
(χ− 2χi)

2(×2) i = 1, 2, 3 ,

− 3

4
+

3

2
χ2
i (×4) i = 1, 2, 3 ,

− 3 + 6χ2
i (×2) i = 1, 2, 3 ,

− 3 +
3

2
(χi ± χj)2(×2) i < j ,

(2.20)

where χ ≡ χ1 + χ2 + χ3 and L2 = −3/V0 is the AdS4 radius. This family of solutions

is perturbatively unstable due to the mass eigenvalue −3 lying below the Breitenlohner-

Freedman bound for stability in AdS4 [49]. The computation of the vector masses yields

m2L2 = 0(×3) , 6(×1) ,

9

4
+

3

2
χ2
i (×4) i = 1, 2, 3 ,

3

2
(χi ± χj) 2(×2) i < j .

(2.21)

Note that a generic solution in this family preserves an SU(2) symmetry as three vectors

are generically massless. Therefore, out of the 28 massless scalars in (2.20), only 3 of them

correspond to physical directions in the scalar potential. An additional U(1)2 factor appears

when imposing a pairwise identification between the free axions χ1,2,3, thus resulting in a

symmetry enhancement to SU(2) × U(1)2. A further identification χ1 = χ2 = χ3 6= 0

implies a symmetry enhancement to SU(3) ×U(1). Lastly, setting χ1,2,3 = 0 enhances the

symmetry to SU(4) ∼ SO(6). This SO(6) symmetric solution was originally studied in [29]

from a ten-dimensional perspective and, more recently, connected with a family of type

IIB S-fold backgrounds in [32].

2.3.2 N = 1 vacua with U(1)2 → SU(2)×U(1)→ SU(3) symmetry

There is a two-parameter family of N = 1 supersymmetric AdS4 solutions that preserves

U(1)2 and is located at

z1,2,3 = c

(
−χ1,2,3 + i

√
5

3

)
and z4 = z5 = z6 = z7 =

1√
6

(1 + i
√

5) , (2.22)
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subject to the constraint

χ1 + χ2 + χ3 = 0 . (2.23)

This family of AdS4 solutions has a vacuum energy given by

V0 = − 162

25
√

5
g2c−1 , (2.24)

and a spectrum of normalised scalar masses of the form

m2L2 = 0(×28) , 4±
√

6(×2) , −2(×2) ,

− 14

9
+ 5χ2

i ±
1

3

√
4 + 45χ2

i (×2) i = 1, 2, 3 ,

− 14

9
+

5

4
χ2
i ±

1

6

√
16 + 45χ2

i (×2) i = 1, 2, 3 ,

7

9
+

5

4
χ2
i (×2) i = 1, 2, 3 ,

− 2 +
5

4
(χi − χj) 2(×2) i < j ,

(2.25)

where L2 = −3/V0 is the AdS4 radius. The computation of the vector masses yields

m2L2 = 0(×2) , 6(×1) , 2(×1) ,

16

9
+

5

4
χ2
i ±

1

6

√
64 + 45χ2

i (×2) i = 1, 2, 3 ,

25

9
+

5χ2
i

4
(×2) i = 1, 2, 3 ,

5

4
(χi − χj) 2(×2) i < j .

(2.26)

Note that a generic solution in this family preserves U(1)2 as only two vectors are generically

massless. Therefore, out of the 28 massless scalars in (2.25), only 2 of them correspond to

physical directions in the potential. The residual symmetry gets enhanced to SU(2)×U(1)

when imposing a pairwise identification between the axions χ1,2,3 so that a total of four

vectors become massless. Finally there is a symmetry enhancement to SU(3) when setting

χ1,2,3 = 0 so that a total of eight vectors become massless. The SU(3) symmetric solution

was recently uplifted to a ten-dimensional family of type IIB S-fold backgrounds in [32].

2.3.3 N = 2 vacua with U(1)2 → SU(2)×U(1) symmetry

There is a one-parameter family of N = 2 supersymmetric AdS4 solutions that preserves

U(1)2 and is located at

z1 = −z̄3 = c

(
−χ+ i

1√
2

)
, z2 = ic, z4 = z6 = i and z5 = z7 =

1√
2

(1 + i) . (2.27)

This family of AdS4 solutions has a vacuum energy given by

V0 = −3g2c−1 , (2.28)

– 8 –
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and a spectrum of normalised scalar masses of the form

m2L2 = 0(×30) , 3±
√

17(×2) , −2(×4) , 2(×6) , −2 + 4χ2(×6)

− 1 + 4χ2 ±
√

16χ2 + 1(×2) , χ2 ±
√
χ2 + 2(×8) ,

(2.29)

where L2 = −3/V0 is the AdS4 radius. The computation of the vector masses yields

m2L2 = 0(×2) , 6(×2) , 4(×2) , 2(×4) ,

4χ2(×2) , 2 + χ2 ±
√
χ2 + 2(×8) .

(2.30)

Note that a generic solution in this family preserves U(1)2 as only two vectors are generically

massless. Therefore, out of the 30 massless scalars in (2.29), only 4 of them correspond to

physical directions in the scalar potential. However, the residual symmetry gets enhanced

to SU(2) × U(1) when χ = 0 and two additional vectors become massless. This special

AdS4 vacuum will be uplifted to a ten-dimensional family of type IIB S-fold backgrounds

in section 3.

2.3.4 N = 4 vacuum with SO(4) symmetry

There is an N = 4 supersymmetric AdS4 solution that preserves SO(4) and is located at

z1 = z2 = z3 = ic and z4 = z5 = z6 = −z̄7 =
1√
2

(1 + i) . (2.31)

This AdS4 solution has a vacuum energy given by

V0 = −3g2c−1 , (2.32)

as for the previous solution, and a spectrum of normalised scalar masses of the form

m2L2 = 0(×48) , 10(×1) , 4(×10) , −2(×11) , (2.33)

where L2 = −3/V0 is the AdS4 radius. The computation of the vector masses yields

m2L2 = 0(×6) , 6(×7) , 2(×15) , (2.34)

thus reflecting the SO(4) residual symmetry at the AdS4 solution. Therefore, out of the

48 massless scalars in (2.33), only 26 of them correspond to physical directions in the

scalar potential. This N = 4 solution was first reported in [28], and then uplifted to a

ten-dimensional family of type IIB S-fold backgrounds in [27].

3 S-folds with N = 2 supersymmetry

From this moment on we will set

g = c = 1 , (3.1)

without loss of generality. From (2.18), (2.22), (2.27) and (2.31) it becomes clear that

varying c amounts to a rescaling of the vacuum expectation values of z1,2,3 ∝ c at the AdS4
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vacua. After c has been set to unity, varying g simply corresponds to a rescaling of the

vacuum energy V0 ∝ g2c−1 and thus to a redefinition of the AdS4 radius L2 = −3/V0. Let

us emphasise again that all the AdS4 vacua in section 2.3 are genuinely dyonic as they do

not survive the limit c → 0 to implement a purely electric gauging. In this limit one has

that Im(z1,2,3) → 0 or, by virtue of (2.9), a runaway behaviour towards the boundary of

moduli space ϕ1,2,3 →∞.

Going back to the goal of this section, the N = 2 family of solutions in section 2.3.3 is

new and preserves a U(1)2 symmetry. It is a one-parameter family of AdS4 vacua and, in

the special case of the parameter vanishing χ = 0, there is an enhancement of symmetry to

SU(2)×U(1). Following [27], and implementing a generalised S-S ansatz in E7(7)-EFT [50],

we will uplift such an N = 2&SU(2) × U(1) symmetric AdS4 vacuum to a class of ten-

dimensional S-fold backgrounds of type IIB supergravity of the form AdS4 × S1 × S5 with

an S-duality hyperbolic monodromy along S1.

3.1 Type IIB uplift using E7(7)-EFT

Generalised Scherk-Schwarz (S-S) reductions of exceptional field theory (EFT) have proved

a very efficient method to perform consistent truncations of eleven-dimensional and type

IIB supergravity on spheres and hyperboloids [51]. Here we are interested in the uplift of

an AdS4 vacuum of a four-dimensional gauged maximal supergravity, which thus selects

the E7(7)-EFT of [50] as the natural framework to carry out this mission.

The E7(7)-EFT lives in an extended space-time that consists of an external four-

dimensional space with coordinates xµ (µ = 0, . . . , 3) and a 56-dimensional generalised

internal space with coordinates YM (M = 1, . . . , 56) in the fundamental representation 56

of E7(7), subject to the action of the E7(7)-covariant generalised diffeomorphisms. In order

to uplift an AdS4 vacuum amongst those in section 2.3 to a ten-dimensional background

of type IIB supergravity, the relevant field content of E7(7)-EFT reduces to the external

metric gµν(x, Y ) and the internal generalised metric MMN (x, Y ) (vector and tensor fields

are consistently set to zero). These are connected with the metric gµν(x) and the scalar

fields MMN (x) of the four-dimensional maximal supergravity in (2.2) via a generalised S-S

ansatz [51]

gµν(x, Y ) = ρ−2(Y )gµν(x) ,

MMN (x, Y ) = UM
K(Y )UN

L(Y )MKL(x) .
(3.2)

The entire dependence on the YM coordinates is then encoded in a twist matrix UM
K(Y )

and a scaling function ρ(Y ) satisfying

(U−1)M
P (U−1)N

Q∂PUQ
K
∣∣
912

=
1

7
ρXMN

K ,

∂N (U−1)M
N − 3ρ−1∂Nρ(U−1)M

N = 2ρϑM ,

(3.3)

where XMN
K is the embedding tensor specifying the gauging in the four-dimensional super-

gravity, ϑM is a constant scaling tensor and |912 denotes projection onto the 912 irreducible

representation of E7(7) where the embedding tensor lives.
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For the dyonic gauging of G ⊂ SL(8) in (2.1) the non-vanishing components of the

embedding tensor were given in (2.5) and the tensor ϑM vanishes identically. The gen-

eralised S-S ansatz depends on six physical coordinates (yi, ỹ) ∈ YM : five of them are

electric yi (i = 2, . . . , 6) and one is magnetic ỹ. Considering the electric-magnetic splitting

of generalised coordinates YM = (Y AB, YAB) under SL(8) ⊂ E7(7), one has

yi = Y i7 ∈ Y AB and ỹ = Y18 ∈ YAB . (3.4)

In terms of the physical coordinates (yi, ỹ) the scaling function ρ in (3.2)–(3.3) reads

ρ(yi, ỹ) = ρ̂(yi)ρ̊(ỹ) , (3.5)

where the two factors in (3.5) are given by

ρ̂4 = 1− |~y|2 and ρ̊4 = 1 + ỹ2, (3.6)

and ~y ≡ (yi). On the other hand, the generalised twist matrix (U−1)M
N in (3.2)–(3.3) is

SL(8)-valued and possesses a block diagonal structure

(U−1)M
N =

(
(U−1)[AB]

[CD] 0

0 (U−1)[AB]
[CD] = U[CD]

[AB]

)
, (3.7)

with components

(U−1)[AB]
[CD] = 2(U−1)[A

[C(U−1)B]
D] , (3.8)

and

(U−1)A
B =

(
ρ̊

ρ̂

) 1
2


1 0 0 ρ̊−2ỹ

0 δij + K̂yiyj ρ̂2yi 0

0 ρ̂2yjK̂ ρ̂4 0

ρ̊−2ỹ 0 0 ρ̊−4(1 + ỹ2)

 . (3.9)

The twist matrix in (3.9) also depends on a function K̂(yi) which is given in this case by

a hypergeometric function [27]

K̂ = −2F1

(
1, 2,

1

2
; 1− |~y|2

)
. (3.10)

Using the dictionary between the fields of type IIB supergravity and those of E7(7)-

EFT [52, 53], together with the S-S ansatz (3.2) involving generalised twist parame-

ters (3.5)–(3.9), one arrives at the final uplift formulae

Gmn = G
1
2Mmn ,

Bmnα = G
1
2Gmpε

αβMp
nβ ,

Cklmn −
3

2
εαβBk[l

αBmn]
β = −1

2
G

1
2GkpMp

lmn ,

mαβ =
1

6
G
(
MmnMmαnβ +Mm

kαMk
mβ

)
,

(3.11)
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for the purely internal components of the type IIB fields: (inverse) metric Gmn, two-

form potentials Bα = (B2, C2) with α = 1, 2, four-form potential C4 and axion-dilaton

mαβ . The various blocks Mmn, Mp
nβ , Mp

lmn and Mmαnβ entering the r.h.s. of (3.11)

can be extracted from the internal generalised metric MMN (x, yi, ỹ) by performing the

group-theoretical decomposition that is relevant for the embedding of type IIB supergravity

into E7(7)-EFT:

E7(7) ⊃ GL(6)× SL(2)IIB × R+

56 → (6,1)+2 + (6’,2)+1 + (20,1)0 + (6,2)−1 + (6’,1)−2

YM → ym + ymα + ymnp + ymα + ym

(3.12)

The physical coordinates are identified as ym = (yi, ỹ), with m = (i, 7) and i = 2, . . . , 6,

which implies a further group-theoretical branching GL(6) → GL(1) × GL(5) compatible

with the R(or S1)×S5 factorisation of the geometry we are behind of. The various mappings

between coordinates discussed above are summarised as

ym ymα ymnp ymα ym

yi y7 yiα y7α yijk yij7 yiα y7α yi y7

Y i7 Y18 Yiα εαβY
β7 εijkj

′k′Yj′k′ Y ij Y iα εαβYβ7 Yi7 Y 18

(3.13)

We refer the reader to the original works [52, 53] (and also [27, 32]) for more details on

the generalised S-S reductions of E7(7)-EFT and their connection with the gauged maximal

supergravities.

We now move to the uplift of the AdS4 vacuum with N = 2&SU(2) × U(1) symme-

try discussed in section 2.3.3 to a ten-dimensional background of type IIB supergravity

using (3.11). We have explicitly verified that the ten-dimensional equations of motion and

Bianchi identities of type IIB supergravity are satisfied.2

Ten-dimensional metric. We adopt the conventions of [32] to describe the geometry of

the round five-sphere S5. Using coordinates yi (i = 2, . . . , 6) to parameterise S5, the metric

and its inverse are given by

Ĝij = δij +
δikδjly

kyl

1− ymδmnyn
and Ĝij = δij − yiyj . (3.14)

However it will also be convenient to introduce a set of embedding coordinates Ym on R6

(m = 2, . . . , 7) of the form

Ym =
{
yi,Y7 ≡

(
1− |~y|2

) 1
2

}
with δmnYmYn = 1 , (3.15)

so that the Killing vectors on S5 are constructed as

Kmni ≡ Ĝij∂jY[mYn] = δi[mYn] . (3.16)

2We adopt the type IIB conventions in the appendix B of [32].
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Following the derivation of [27], the internal part of the ten-dimensional metric has

components in (3.11) given by

G11 = ∆ρ̊4M1818 = 2∆(1 + ỹ2) ,

G1k = ∆ρ̊2KijkM ij
18 = 0 ,

Gij = ∆KkliKmnjMklmn = ∆
(
Ĝij + Lij

)
,

(3.17)

where M ij
18 = 0 as a consequence of having set χ = 0 in the N = 2 AdS4 vacuum, and

where we have defined

Lij =



Y2
4 + Y2

5 + Y2
6 −Y6Y7 −Y2Y4 −Y2Y5 −Y2Y6

−Y6Y7 Y2
4 + Y2

5 + Y2
7 −Y3Y4 −Y3Y5 Y2Y7

−Y2Y4 −Y3Y4 1− Y2
4 −Y4Y5 −Y4Y6

−Y2Y5 −Y3Y5 −Y4Y5 1− Y2
5 −Y5Y6

−Y2Y6 Y2Y7 −Y4Y6 −Y5Y6 Y2
4 + Y2

5 + Y2
2


. (3.18)

The warping factor ∆ in (3.17) is nowhere vanishing and reads

∆ = (detG)
1
2 ρ2 =

1√
2

(
1 + Y2

4 + Y2
5

)− 1
4 . (3.19)

The six-dimensional internal metric becomes more transparent if first introducing a

new variable for the magnetic coordinate

ỹ = sinh η with η ∈ (−∞,∞) , (3.20)

and then a set of angular variables for S5 of the form

y2 = cos θ cos

(
β

2

)
cos

(
α+ γ

2

)
, y3 = cos θ cos

(
β

2

)
sin

(
α+ γ

2

)
,

y4 = cosφ sin θ, y5 = sinφ sin θ,

y6 = cos θ sin

(
β

2

)
cos

(
α− γ

2

)
,

(3.21)

with ranges given by

θ ∈
[
0,
π

2

]
, φ ∈ [0, 2π] , α ∈ [0, 2π] , β ∈ [0, π] , γ ∈ [0, 2π] . (3.22)

In this manner, and upon introducing a set of SU(2) left-invariant one-forms

σ1 =
1

2
(− sinαdβ + cosα sinβdγ),

σ2 =
1

2
(cosαdβ + sinα sinβdγ),

σ3 =
1

2
(dα+ cosβdγ),

(3.23)
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the internal six-dimensional metric takes a simple R× S5 form

ds2
6 =

1

2
∆−1

[
dη2 + ds2

S2 + cos2 θds2
S3

]
, (3.24)

with a warping factor

∆−1 =
(
6− 2 cos(2θ)

) 1
4 , (3.25)

and where we have introduced S2 and (squashed) S3 metrics to describe the deformation

of the internal S5. These metrics are explicitly given by

ds2
S2 = dθ2 + sin2 θdφ2 and ds2

S3 = σ2
2 + 8∆4

(
σ2

1 + σ2
3

)
. (3.26)

Bringing together (3.24) and the external AdS4 part of the geometry, one obtains a

ten-dimensional metric of the form3

ds2 =
1

2
∆−1

[
ds2

AdS4
+ dη2 + ds2

S2 + cos2 θds2
S3

]
. (3.27)

This metric has an SU(2) × U(1)φ × U(1)σ symmetry, where U(1)σ acts as a rotation on

the (σ1, σ3)-plane. Finally, our choice of undeformed frames for the metric (3.27) is

ds2
AdS4

: ê0 =
L

r
dr, êi =

L

r
dxi (i = 1, 2, 3) and ηij = (−1, 1, 1)

ds2
R : ê4 = dη

ds2
S2 : ê5 = dθ, ê6 = sin θdφ

ds2
S3 : ê7 = σ1, ê8 = σ2, ê9 = σ3

(3.28)

with L2 = −3/V0 = 1 being the AdS4 radius at the four-dimensional N = 2&SU(2)×U(1)

symmetric AdS4 vacuum.

B2 and C2 potentials. The two-form potentials Bα = (B2, C2) in (3.11) transform as a

doublet under the global S-duality group SL(2,R)IIB of type IIB supergravity. An explicit

computation along the lines of [27] shows that

B1j
α = 0 ,

Bijα = ∆GikKklk∂jYmεαβ(A−1)γβM
kl
mγ ,

(3.29)

in terms of a local SO(1, 1) ⊂ SL(2,R)IIB twist matrix

Aαβ ≡

(
cosh η sinh η

sinh η cosh η

)
, (A−1)γβ ≡

(
cosh η − sinh η

− sinh η cosh η

)
. (3.30)

3Restoring the explicit dependence of the warping factor (3.25) on the parameter c one finds ∆ ∝ c, so the

(electric) limit c→ 0 of the metric (3.27) becomes pathological. In other words, the ten-dimensional solution

is genuinely dyonic, namely, it requires c 6= 0, as for its associated AdS4 vacuum in (2.27) with χ = 0.
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This matrix encodes the dependence of the two-form potentials on the direction η. Us-

ing the scalar block Mkl
mγ at the N = 2 AdS4 vacuum under consideration, and using

differential form notation, one finds

Bα = Aαβb
β , (3.31)

with

b1 =
1√
2

cos θ

[(
cosφdθ +

1

2
sin(2θ)d(cosφ)

)
∧ σ2 + cosφ

4 sin(2θ)

6− 2 cos(2θ)
σ1 ∧ σ3

]
,

b2 = − 1√
2

cos θ

[(
sinφdθ +

1

2
sin(2θ)d(sinφ)

)
∧ σ2 + sinφ

4 sin(2θ)

6− 2 cos(2θ)
σ1 ∧ σ3

]
.

(3.32)

The two-form potentials in (3.32) preserve SU(2) × U(1)σ but break the U(1)φ factor due

to the explicit dependence on the coordinate φ.

C4 potential. The internal component of the four-form potential C4 can be explicitly

obtained from the third uplift formula in (3.11). Computing the associated (purely internal)

five-form field strength, and imposing ten-dimensional self-duality, one gets

F̃5 = dC4−
1

2
εαβBα∧Hβ

= (1+?)

[
6
√

2∆5/2volM5 (3.33)

−4∆4 sinθ cos3 θdη∧
(

cos(2φ)dθ− 1

2
sin(2θ)sin(2φ)dφ

)
∧σ1∧σ2∧σ3

]
,

where

volM5 =
√

2∆3/2 sin θ cos3 θdθ ∧ dφ ∧ σ1 ∧ σ2 ∧ σ3 , (3.34)

denotes the volume of the deformed five-sphere. Note that U(1)φ is also broken by F̃5 due

to its explicit dependence on the coordinate φ.

Axion-dilaton. The axion-dilaton matrix mαβ can be obtained from the last equation

in (3.11). Transforming linearly under S-duality, a direct computation shows an explicit

dependence of mαβ on the A-twist in (3.30) of the form

mαβ =
1

Imτ

(
|τ |2 −Reτ

−Reτ 1

)
= (A−t)α

γmγδ(A
−1)δβ , (3.35)

with τ = C0 + ie−Φ and

mγδ = 2∆2

(
1 + sin2 θ cos2 φ −1

2 sin2 θ sin(2φ)

−1
2 sin2 θ sin(2φ) 1 + sin2 θ sin2 φ

)
. (3.36)
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Again U(1)φ is broken by the explicit dependence of (3.36) on the angle φ. This concludes

the uplift of the AdS4 vacuum with N = 2 and SU(2) × U(1) symmetry discussed in

section 2.3.3 to a ten-dimensional background of type IIB supergravity. It is worth empha-

sising that, if trivialising the A-twist in (3.30), i.e. Aαβ = δαβ , then the ten-dimensional

equations of motion of type IIB supergravity are no longer satisfied.

3.2 S-fold interpretation

The dependence of the full type IIB solution on the coordinate η along the R direction of

the geometry (3.27) is totally encoded in the local SL(2,R)IIB A-twist in (3.30). This twist

matrix is of hyperbolic type and thus induces a non-trivial monodromy

MS1 = A−1(η)A(η + T ) =

(
coshT sinhT

sinhT coshT

)
, (3.37)

when forcing the η coordinate to be periodic η → η + T with period T , namely, when

replacing R→ S1 in the geometry. Generalising the A-twist in (3.30) to a discrete k-family

(k ∈ N with k ≥ 3) of new ones

A(k) = Ag(k) with g(k) =


(k2 − 4)

1
4

√
2

0

k
√

2(k2−4)
1
4

√
2

(k2 − 4)
1
4

 , (3.38)

the monodromy (3.37) gets generalised to a k-family of SL(2,Z)IIB hyperbolic monodromies

M(k) = A−1
(k)(η)A(k)

(
η + T (k)

)
=

(
k 1

−1 0

)
, k ≥ 3 , (3.39)

with T (k) = log(k +
√
k2 − 4) − log(2) and TrM(k) > 2. Therefore, as discussed in [27]

(see also [32]), these backgrounds can be interpreted as locally geometric compactifications

on S1 × S5 involving a k-family of S-duality monodromies (3.39). These monodromies can

be written as

M(k) = −ST k with S =

(
0 −1

1 0

)
and T =

(
1 0

1 1

)
, (3.40)

and thus define a k-family of S-fold backgrounds. Moreover, the argument wielded in [27]

for the straightforward uplift of the four-dimensional supersymmetries to ten dimensions

relied on the monodromy (3.37) being in the hyperbolic conjugacy class of SL(2,R)IIB.

This is still our case, so the S-folds presented here preserve N = 2 supersymmetry.

Lastly, various holographic aspects of both N = 4 [27] and N = 1 [32, 36] S-folds with

hyperbolic monodromies have respectively been investigated in [33–35] and [36] within the
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context of three-dimensional quiver theories involving N = 4 T (U(N)) theories [38], and

their potential generalisation to N = 1 SCFT’s. It would be interesting to extend these

holographic studies to the N = 2 S-folds with hyperbolic monodromies (3.39) presented in

this work.

3.3 Connection with Janus-like solutions

The type IIB solution with N = 2&SU(2)×U(1) symmetry we just obtained can be

mapped to a new (but equivalent) solution with a linear dilaton profile along the coor-

dinate η upon performing a global Λ ∈ SL(2,R)IIB transformation, equivalently a change

of duality frame, based on the matrix element

Λ =
1√
2

(
1 −1

1 1

)
. (3.41)

The composed action of ΛA−1(η) on (3.36) yields a shift of the form Φ→ Φ− 2η. There-

fore, a degenerate Janus-like behaviour with a linear dilaton Φ running from −∞ to ∞
becomes manifest

gs = eΦ ∝ e−2η , (3.42)

giving rise to a varying string coupling gs that interpolates between the singular values 0

and ∞.

Upon performing the Λ ∈ SL(2,R)IIB transformation (3.41) on the original solution

found in section 3.1, a new type IIB background is generated. The metric and self-dual five-

form flux are SL(2,R)IIB singlets and are not affected by the transformation. Therefore,

they take the same form as in (3.27) and (3.33), namely,

ds2 =
1

2
∆−1

[
ds2

AdS4
+dη2+dθ2+sin2 θdφ2+cos2 θ

(
σ2

2 +8∆4
(
σ2

1 +σ2
3

))]
,

F̃5 = 4∆4 sinθ cos3 θ(1+?)

[
3dθ∧dφ∧σ1∧σ2∧σ3

−dη∧
(

cos(2φ)dθ− 1

2
sin(2θ)sin(2φ)dφ

)
∧σ1∧σ2∧σ3

]
.

(3.43)

The axion-dilaton matrix mαβ in (3.35) transforms linearly under SL(2,R)IIB. Reading off

the new components of τ one finds

Φ = −2η + log

[
1

2
∆2
(
5− cos(2θ)− 2 sin2 θ sin(2φ)

)]
,

C0 = −2e2η cos(2φ) sin2 θ

5− cos(2θ)− 2 sin2 θ sin(2φ)
.

(3.44)
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The two-form potentials Bα = (B2, C2) in (3.31)–(3.32) transform as an SL(2,R)IIB doublet

and take the new form4

B2 = e−η
[

1

2
cos θ

(
(cosφ+ sinφ)dθ +

1

2
sin(2θ)(cosφ− sinφ)dφ

)
∧ σ2

+ 2∆4 cos θ sin(2θ)(cosφ+ sinφ)σ1 ∧ σ3

]
,

C2 = eη
[

1

2
cos θ

(
(cosφ− sinφ)dθ − 1

2
sin(2θ)(cosφ+ sinφ)dφ

)
∧ σ2

+ 2∆4 cos θ sin(2θ)(cosφ− sinφ)σ1 ∧ σ3

]
.

(3.45)

The nowhere vanishing warping factor still reads

∆−4 = 6− 2 cos(2θ) . (3.46)

In the asymptotic region at η → −∞ one has that gs in (3.42) diverges (strong coupling)

and B2 dominates over other gauge potentials, e.g., C0 → 0 and C2 → 0. On the contrary,

in the asymptotic region at η →∞, the solution becomes dominated by C0 and C2 whereas

gs → 0 (weak coupling) and B2 → 0. At intermediate values of the coordinate η one has an

interpolating behaviour between these two regimes. Finally, it is also worth noticing that,

unlike for the N = 4 [27] and N = 1 [32] S-folds, there is no SL(2,R)IIB frame in which

the axion C0 (and thus the dual θ-angle) vanishes identically or becomes independent of

the coordinate η.

4 Conclusions

In this work we have extended the study of AdS4 vacua in [28, 31, 32] for the dyonically-

gauged [SO(1, 1)×SO(6)]nR12 maximal supergravity and found multi-parametric families

of new AdS4 vacua. Within one such families, all the solutions preserve the same amount

of supersymmetry but, importantly, residual symmetry enhancements occur at particular

values of the parameters. The previously known N = 0&SO(6) [31], N = 1&SU(3) [32] and

N = 4&SO(4) [28] AdS4 vacua are shown to correspond to the points of largest symmetry

enhancement within their respective families. This is in line with the analysis of (global)

symmetry breaking patterns of three-dimensional interface SYM theories presented in [39].

In the second part of the paper we focused on the new family of N = 2 supersymmetric

AdS4 vacua and, more concretely, on the vacuum within this family featuring the largest

possible residual symmetry, which turns to be SU(2)×U(1). By implementing a generalised

4The two terms in B2 and C2 which are proportional to σ1 ∧ σ3 can be eliminated by means of a gauge

transformation of the form

B2 → B2 − d
(
2
√

2∆4e−η sin(2θ) cos θ cosψσ2

)
,

C2 → C2 + d
(
2
√

2∆4eη sin(2θ) cos θ sinψσ2

)
,

where we have shifted the coordinate φ→ ψ+ π
4

. However, since these terms are generated by the generalised

S-S ansatz discussed in section 3.1, we will retain them here.

– 18 –
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S-S ansatz in E7(7)-EFT, we uplifted the AdS4 vacuum to a new family of AdS4 × S1 × S5

S-folds of type IIB supergravity with hyperbolic monodromies M(k) = −ST k (with k ≥ 3)

along S1. The residual SU(2) × U(1) symmetry and N = 2 supersymmetry of the AdS4

vacuum are realised on the S-folds: the internal S5 is deformed into a product of S2 and

(squashed) S3 with SU(2) × U(1)σ × U(1)φ isometries and a warping factor, whereas the

background fluxes break the U(1)φ factor explicitly by introducing a dependence on the

coordinate φ. In many aspects, the realisation of symmetries is much alike the AdS5 × S5

background by Pilch and Warner [54] that uplifts the N = 2 and SU(2)×U(1) symmetric

AdS5 vacuum of the five-dimensional SO(6) maximal supergravity presented in [55].

Finally it would be interesting to investigate the brane setups underlying the families

of S-folds presented here (and in [32]), especially due to the non-trivial SL(2,Z)IIB hyper-

bolic monodromies M(k) = −ST k. It would also be interesting to investigate holographic

aspects of such N = 2 and N = 1 S-folds (in the spirit of the J-fold CFT’s of [33–36] with

J = −ST k), as well as to study holographic RG flows by explicitly constructing domain-

wall solutions interpolating between the various families of AdS4 vacua presented in this

work. Lastly, since the S-folds here and in [32] display SU(2) isometries in the internal

geometry, it would also be interesting to apply non-abelian T-duality in order to generate

new analytic type IIA backgrounds. We plan to address these and related issues in the

future.
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