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RESUMEN (en español)

En esta tesis se tratará el papel de T-dualidad no abeliana como técnica para generar 
soluciones en supergravedad de tipo II. Nos centraremos en el problema abierto de 
proporcionar a los nuevos backgrounds AdS, de forma consistente, teorías de campos 
súperconformes, las cuales pueden ser vistas como puntos fijos del flujo de renormalización de 
quivers lineales de rango creciente. Se propondrá así mismo una interesante relación entre 
estos quivers y la descripción mediante T-dualidad abeliana de las teorías originales en 
términos de quivers circulares.

Se revisará por otra parte el potencial de T-dualidad no abeliana para motivar, sondar o poner a 
prueba clasificaciones de soluciones supersimétricas. Encontraremos nuevos backgrounds para
distintos espacios AdS y cantidades de supersimetría preservada, incluyendo una solución N=2 
AdS4 explícita en teoría M con flujo puramente magnético, la cual resulta relevante para nuevas
dualidades de SCFT en tres dimensiones. Nuestros esfuerzos nos conducirán así mismo a 
nuevos candidatos AdS3xS2 para límites near-horizon de agujeros negros en dimensiones 
altas, motivando así una extensión de la clase conocida de estas geometrías.

Por último, se intentará conseguir una clasificación más amplia de soluciones Minkowski 
supersimétricas de tipo II en dimensiones bajas, en las cuales se permitirá que la simetría R se 
encuentre manifiesta geométricamente. Además de recuperar diversas geometrías near-horizon
AdS, pondremos de manifiesto la unicidad de la geometría N=4 AdS4xS3 de tipo II. Por otra 
parte, se descubrirá una nueva clase de soluciones Mink3, que incluye un background 
puramente NS. Se espera que estos resultados resulten de interés para las compactaciones 
con flujo y la extensión de holografía a teorías no conformes, aparte de la clasificación de 
geometrías AdS en dimensiones más altas.



RESUMEN (en Inglés)

In this thesis we will discuss non-Abelian T-duality as a solution generating technique in type II 
supergravity. We will focus on the open problem of providing newly generated AdS 
brackgrounds with consistent dual superconformal field theories, which can be seen as 
renormalization group fixed points of linear quivers of increasing rank. An interesting relation 
between these quivers and the Abelian T-dual description of the original theories in terms of 
circular quivers will be pointed out.

We will review the potential of non-Abelian T-duality to motivate, probe or challenge 
classifications of supersymmetric solutions. We will find new backgrounds for different AdS 
spaces and amounts of preserved supersymmetry, including an explicit N=2 AdS4 solution in M-
theory with purely magnetic flux, of relevance for new dualities of three-dimensional SCFTs. Our 
endeavours will also lead us to new AdS3xS2 candidates to higher-dimensional black hole near-
horizon limits, while motivating an extension of the known class of such geometries.

Finally, a broader classification of type II supersymmetric lower-dimensional Minkowski solutions
will be attempted, in which the R-symmetry is allowed to be realized geometrically. Apart from 
recovering several known AdS near-horizon geometries, we will report on the uniqueness of the 
type II N=4 AdS4xS3 geometry. Besides, a new class of Mink3 solutions will be uncovered, 
which includes a pure NS background. These results are expected to be of interest for flux 
compactifications and the extension of holography to non-conformal theories, other than the 
classification of AdS geometries in higher dimensions.
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Abstract

In this thesis we will discuss non-Abelian T-duality as a solution generat-
ing technique in type II supergravity. We will focus on the open problem
of providing newly generated AdS backgrounds with consistent dual super-
conformal field theories, which can be seen as renormalization group fixed
points of linear quivers of increasing rank. An interesting relation between
these quivers and the Abelian T-dual description of the original theories in
terms of circular quivers will be pointed out.

We will review the potential of non-Abelian T-duality to motivate, probe
or challenge classifications of supersymmetric solutions. We will find new
backgrounds for different AdS spaces and amounts of preserved supersym-
metry, including an explicit N = 2 AdS4 solution in M-theory with purely
magnetic flux, of relevance for new dualities of three-dimensional SCFTs.
Our endeavours will also lead us to new AdS3 × S2 candidates to higher-
dimensional black hole near-horizon limits, while motivating an extension of
the known class of such geometries.

Finally, a broader classification of type II supersymmetric lower-dimensional
Minkowski solutions will be attempted, in which the R-symmetry is allowed
to be realized geometrically. Apart from recovering several known AdS near-
horizon geometries, we will report on the uniqueness of the type II N = 4
AdS4 × S3 geometry. Besides, a new class of Mink3 solutions will be un-
covered, which includes a pure NS background. These results are expected
to be of interest for flux compactifications and the extension of holography
to non-conformal theories, other than the classification of AdS geometries in
higher dimensions.





Resumen

En esta tesis se tratará el papel de T-dualidad no abeliana como técnica
para generar soluciones en supergravedad de tipo II. Nos centraremos en el
problema abierto de proporcionar a los nuevos backgrounds AdS, de forma
consistente, teoŕıas de campos súperconformes, las cuales pueden ser vistas
como puntos fijos del flujo de renormalización de quivers lineales de rango
creciente. Se propondrá aśı mismo una interesante relación entre estos quivers
y la descripción mediante T-dualidad abeliana de las teoŕıas originales en
términos de quivers circulares.

Se revisará por otra parte el potencial de T-dualidad no abeliana para mo-
tivar, sondar o poner a prueba clasificaciones de soluciones supersimétricas.
Encontraremos nuevos backgrounds para distintos espacios AdS y cantidades
de supersimetŕıa preservada, incluyendo una solución N = 2 AdS4 expĺıcita
en teoŕıa M con flujo puramente magnético, la cual resulta relevante para
nuevas dualidades de SCFT en tres dimensiones. Nuestros esfuerzos nos con-
ducirán aśı mismo a nuevos candidatos AdS3 × S2 para ĺımites near-horizon
de agujeros negros en dimensiones altas, motivando aśı una extensión de la
clase conocida de estas geometŕıas.

Por último, se intentará conseguir una clasificación más amplia de so-
luciones Minkowski supersimétricas de tipo II en dimensiones bajas, en las
cuales se permitirá que la simetŕıa R se encuentre manifiesta geométricamen-
te. Además de recuperar diversas geometŕıas near-horizon AdS, pondremos
de manifiesto la unicidad de la geometŕıa N = 4 AdS4 × S3 de tipo II. Por
otra parte, se descubrirá una nueva clase de soluciones Mink3, que incluye un
background puramente NS. Se espera que estos resultados resulten de interés
para las compactaciones con flujo y la extensión de holograf́ıa a teoŕıas no
conformes, aparte de la clasificación de geometŕıas AdS en dimensiones más
altas.
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Preface

This thesis has been submitted to the University of Oviedo, as a partial
fulfillment of the requirements to obtain the PhD degree. The work presented
here has been developed during the years 2014-2018 under the supervision
of Prof. Yolanda Lozano in the High Energy Physics Theory Group at the
Department of Physics of the same university.

Thesis objectives

In this work we intend to study and classify solutions of type II supergravity,
providing a holographic interpretation thereof. In particular we aim to:

� Using non-Abelian T-duality, generate AdS solutions in type II super-
gravity that are hard to reach employing other methods available in
the literature.

� Regarding the existence, or not, of a CFT associated with the new
AdS solutions, provide an interpretation to the non-compact direction
arising under non-Abelian T-duality.

� Improve our understanding of this transformation, in order to eventu-
ally elucidate whether it can be thought of as a string theory symmetry
or not.

� Using pure spinors and G-structure formalism, propose an extension of
the known classes of supersymmetric solutions, motivated by the new
backgrounds found using non-Abelian T-duality.

� Extend to lower dimensions the existing results on the classification of
supersymmetric type II geometries with a Minkowski external space.

I



The structure of this thesis, in the collection-of-papers format, is as fol-
lows: We start with the introduction in section 1, followed by a review the
worldsheet formalism of non-Abelian T-duality in section 2, that includes
the transformation rules for both the NS-NS and RR-sectors. A copy of
the papers on which this thesis is based is given in section 3. Next, a tech-
nical summary of the results is provided in section 4, followed by a more
general discussion and conclusions in section 5. Last, a list of references for
this text is supplied, apart from the ones included in the copies of the articles.

We remark that, following requirements of the PhD programme, the ab-
stract and conclusions are written both in English and Spanish.
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superconformal near-horizons from M-theory”, Physical Review D 93,
086010 (2016).

5. Y. Lozano, N T. Macpherson, J Montero, “N = 2 supersymmetric
AdS4 solution in M-theory with purely magnetic flux”, Journal of High
Energy Physics 10, 4 (2015).

6. Y. Lozano, N. T. Macpherson, J. Montero, E. Ó. Colgáin, “New AdS3×
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1. Introduction

We start providing some context and motivation for the use of non-Abelian
T-duality to generate AdS solutions of supergravity, reviewing the main ad-
vantages and issues of this technique, with emphasis on the holographic inter-
pretation of the newly generated solutions. We will continue this introduction
in section 1.2, where the focus will change to the classification of the novel
AdS geometries, still in the holographic setting. We will end up motivating
the use of Killing spinor techniques to build up classes of non-AdS solutions.

1.1 Non-Abelian T-duality and holography

In recent years, the gauge/gravity or holographic correspondence has proven
to be a powerful spin-off of String Theory, permitting the study of strongly-
coupled quantum field theories, even when a Lagrangian description is not
available, by means of a dual weakly-coupled semiclassical theory of gravity.
This duality was originally formulated as an AdS/CFT correspondence [1],
relating a string theory on an Anti de-Sitter (AdS) space to a quantum
conformal field theory (CFT) on flat spacetime. In particular, the Maldacena
conjecture connected type IIB supergravity (the low-energy limit of string
theory) on AdS5×S5 to the strong coupling limit of N = 4 super Yang-Mills
(SYM) in four dimensions.

By means of the AdS/CFT correspondence, several dualities arising in
string theory have become common tools in the field theoretical understand-
ing of CFTs, translating the action e.g. of T- or S-duality relating different
AdS vacua to the dual field theories.

Many interesting applications of holography, including the study of QCD
phenomena and condensed matter systems, require models to be scale-dependent
and show minimal or no preserved supersymmetry, as this has not been ob-
served yet. This urged for an extension of the AdS/CFT correspondence to
non-conformal theories, giving rise to a more general gauge/gravity duality.

In recent years, the systematic study of supersymmetric solutions with
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non-trivial fluxes in the low-energy limit of string and M-theory has proven
relevant in the context of holography as well as in phenomenologically rele-
vant string compactifications. The geometries of interest are usually a warped
product of either a Minkowski or AdS external space with an internal man-
ifold which, in the latter case, is taken to be compact in order to allow for
a holographic interpretation. Indeed, many AdS/CFT pairs have been con-
structed from solutions generated in supergravity.

In this thesis we will focus on the use of non-Abelian T-duality (NATD)
as a solution generating technique in type II supergravity. We will uncover
new supersymmetric solutions in both type IIA/IIB, starting from seed so-
lutions of type IIB/IIA. These are chosen carefully: they have a well known
holographic dual field theory, but also they are expected to lead us to new
backgrounds, allowing us e.g. to provide explicit examples to known classi-
fications, when these are hard to reach using other methods. Furthermore,
if we start with a 10D gravity solution with AdS external space and apply
NATD to the isometries of the internal space, the AdS factor will be pre-
served and we may wonder what kind of dual CFT could be associated to
the new solution. Based on computations relying on the backgrounds fields
(i.e. the metric, dilaton, Kalb-Ramond two-form and RR fluxes), we may try
to deduce some properties of this putative CFT.

The T-duality formalism1 relies on a non-linear sigma-model (NLSM)
describing the propagation of a string in 10D target space, for which an
isometry group G is assumed. For Abelian T-duality, G = U(1), otherwise
G is a non-Abelian isometry group. In order to get the dual action, the
theory is minimally coupled to G, gauging the isometry but enforcing a flat
connection with the addition to the action of a Lagrange multiplier term.
Integrating out this G-connection, one is led to the dual NLSM, describing
the propagation of a string in a different target space. For the usual U(1)
T-duality, the Buscher rules [2] allow us to relate algebraically the metric
and B-field between the original 10D background and its T-dual, reading
them off from the coefficients of the embedding scalars. An important point
is that the coordinate for the original isometric direction is replaced, after
integrating out the G-connection, by the corresponding Lagrange multiplier,
which lives in the Lie algebra of G.

The transformation of the RR-sector under T-duality was derived in [3],
matching the field contents of both reductions to nine dimensions of two
T-dual theories in type II. This permitted to apply T-duality to an initial
solution with RR fluxes turned on and get a T-dual background which still
was a type II supergravity solution.

1We introduce the worldsheet formalism of non-Abelian T-duality in section 2.
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The generalization of Abelian T-duality (ATD) to non-Abelian isometries
at the level of the string sigma model was known since the nineties [4, 5],
allowing for the transformation of the NS-NS sector of a given 10D target
space. However, it has not been until this decade that the work of [6] taught
us how to transform the RR sector accordingly, extending the construction
made for the Abelian case by [7]. This relied on the spinor representation
of T-duality, which can be derived from the Lorentz transformation relating
the vielbeins for left and right movers of the dual target space. The trans-
formation rules for the RR sector then follow writing the fluxes as bispinors.

The discovery of [6] led to the recent works uncovering a plethora of new
backgrounds, for different AdS dimensionalities and amounts of preserved
supersymmetry. In fact, NATD permits to reach solutions that are difficult
to be found using other methods, and without e.g. needing to tackle with the
PDEs of some class of solutions. A prototypical example is the explicit AdS6

solution in type IIB supergravity2 found in [9] applying NATD to the type
IIA Brandhuber-Oz solution [10], which permitted to get hints of the possible
dual 5D fixed point theories [11]. A rich class of solutions constructed us-
ing NATD included AdS5 backgrounds with a Sasaki-Einstein internal space.
These geometries were extensively investigated [12, 13, 14], supplying a rich
phenomenology for the possible SCFTs and RG flows of the new supersym-
metric backgrounds. However, a full description of the dual field theories
(e.g. including a superpotential) was typically missing in these examples.

Despite its power as a solution generator, NATD presents several, long
standing questions that hinder the holographic interpretation of the new
backgrounds, see e.g. [15, 16]. Even if the sigma model computation of the
NS-NS sector of the new background is straight-forward, the procedure is not
known to be invertible, unlike its Abelian counterpart, and it fails to provide
all the global information about the new geometry, this latter issue being one
of the main points we deal with in this thesis.

In the ATD case, it was possible to derive a condition to recover the
U(1) group manifold from the Lagrange multiplier living in its Lie algebra.
This was achieved requiring the cancellation of holonomies of the U(1) gauge
connection around non-trivial cycles of the string worldsheet (whose number
n is given by the power O(gns ) of the string coupling constant perturbative
series). This killed two birds with one stone: on the one hand, it showed
ATD maps circles to circles (even if the radius thereof is inverted), and on
the other hand, it proved that it was a symmetry to all orders in perturbative
string theory.

2Another example of an explicit AdS6 IIB solution being the Abelian T-dual of
Brandhuber-Oz, found in [8].
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However, in the non-Abelian case, non-commutativity of the gauge con-
nection gives rise to terms apparently impeding the cancellation of the un-
wanted holonomies. As an immediate consequence, NATD can only be
proven to be a transformation between string NLSMs at tree level in string
perturbation theory (i.e. for spherical worldsheets). As a by-product, we also
have lost the argument that allowed in the Abelian case to keep a compact
space after dualization: all that is left as dual coordinates by NATD live in
the Lie algebra of the isometry group, which is obviously non-compact by
its construction as a vector space. In addition to this, regarding corrections
in the string length, the conformal symmetry of the string NLSM is only
proven to survive the NATD transformation at first order in α′ (as opposed
to its Abelian counterpart, shown to work at all orders). These issues have
an overall and clear output:

NATD is not proven to be a string theory symmetry, but just a transfor-
mation, or map, between type II supergravity solutions.

It is precisely this fact what allows us to claim that the backgrounds
generated under its action can be associated to different vacua of string
theory, and are not just physically equivalent realizations of the same vacuum,
as opposed to its Abelian counterpart [17, 18].

As a drawback, we currently lack a well-defined representation of NATD
on the field theory side. The putative CFT duals to the new backgrounds
are only guaranteed to exist in the strong coupling regime, as the NATD
transformation is not known to survive α′ or 1/N corrections. Still, we may
infer some properties of this would-be CFT from the new background, and
even define a quiver gauge theory, from which the CFT would arise as an
RG flow fixed point. This will be our approach in this thesis.

We will focus on NATD applied with respect to an SU(2) isometry group
acting without isotropy3, and dualize along the directions of its group man-
ifold realization in 10D target space: a (possibly squashed) 3-sphere. Note,
however, that other incarnations of NATD as a solution generator are known
in the literature, see e.g. [19] or [20]. Our choice of NATD is known to pro-
vide a map between SUGRA solutions [21] 4 and usually allows for some
(if not all) SUSY to be preserved, choosing appropriately the dualization
directions5, whereas NATD on coset spaces leads in known examples to non-

3The isometry group is chosen such that there are no fixed points under its action.
4NATD on non-semisimple groups has been shown to lead to solutions of generalized

supergravity for some Bianchi spaces, see [22] and the references therein.
5Upon dualization on a SU(2) isometry, it was shown in [21] that the vanishing of

Kosmann spinorial Lie derivative for the Killing spinors along the isometry directions in
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supersymmetric solutions [19]. Besides, an SU(2) isometry is the simplest
generalization of the Abelian case. The use of a larger isometry group would
require a more constrained initial background, allowing less room for possible
seed solutions.

From the discussion above, we expect the group manifold coordinates of
SU(2), e.g. Euler angles realizing the 3-sphere in target space, to get mapped
to elements of the uncompact su(2). Still, an adequate parametrization of the
dual coordinates may be required in order to realize any left-over global sym-
metries. Indeed, upon dualization on a round 3-sphere with SO(4) isometry,
an SU(2) subgroup is expected to survive in the dual background6. Using
spherical coordinates to parametrize the NAT-dual directions, this symmetry
is realized explicitly at the level of the metric as a warped M3 ' R+ × S2

space.

Regarding compactness, we seem to get a 3-sphere substituted for this
M3 space. Usually, one can run along its ”radial” direction ρ ∈ R+ without
finding any hint of the 10D supergravity description breaking down (e.g. sin-
gularities, large curvature or dilaton). In the simplest cases, the metric on
M3 clearly interpolates between R3 for small ρ, and a cylinder for large ρ,
thus describing a space with the shape of an infinite cigar. At least in this
cases, we could claim the global properties of the new background are per-
fectly determined, M3 being uncompact and thus having the new background
an internal space of infinite volume.

However, if one is interested in the holographic interpretation of the newly
found AdS solution, an infinite internal space would lead to an inconsistent
dual SCFT, with an infinite holographic central charge or free energy. We
would then need to discard this solution as suitable for holography. Instead,
in this thesis we settle for an alternative perspective: the fact that the dual
coordinates live in a Lie algebra, and no group manifold can be assigned
to them from the information provided by NATD alone, is just a hint that,
apart from the residual isometries7, the global properties of the dual manifold
cannot be inferred from the transformation itself. In this second approach,
the internal space is thought to be compact, yet globally unknown.

Assuming the new solutions have indeed a compact internal space, com-
patible with a would-be consistent dual field theory, but not fully determined,

the original background was a necessary and also sufficient condition for SUSY to be
preserved.

6For a full SO(4) ≈ SU(2)×SU(2) isometry, the string worldsheet theory is a principal
chiral model exhibiting the to-be-dualized SU(2) isometry, but also an additional spectator
SU(2), which can be realized as a residual isometry after NATD in appropriate coordinates.

7Any global symmetries already present in the original target space, and independent
of the dualization directions, will be also manifest in the new background.
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gives rise to one of the most important open questions in the study of NATD:
How do we get the piece of extra information needed to determine the new
AdS/CFT pair? We hope to make a contribution towards a definite answer
to this question in this work.

Our approach in [23, 24], see sections 3.4 and 3.5, followed the ideas
developed in [25], also extended and applied in other recent works [26, 27,
28, 29].

In [25] the non-Abelian T-dual of AdS5 × S5 already found in the sem-
inal paper [6] is investigated, using its embedding in the N = 2 Gaiotto-
Maldacena geometries [30], in order to regularize the field theory and com-
plete the background. GM geometries are the gravity duals of theories living
in the worldvolume of D4-NS5 intersections. The embedding of the NATD
background in this class provided a strong support to the brane set-up pro-
posed for the solution (let us recall that the mapping of brane intersections
under NATD is not known). In particular, they manage to use the detailed
AdS/CFT dictionary known for this class of solutions to propose a consistent
4D N = 2 long quiver for which a complete gravity dual solution (i.e. with
finite internal volume) can be determined. Then, the NATD gravity solution
arises as an asymptotic, local realization of this completed solution8.

The first extension of these ideas was done in [23], in which a solution
generated with NATD is embedded in the class [32, 33] of type IIB N = 4
AdS4×S2×S2 backgrounds. A consistent field theory proposal was achieved
for the new background employing the holographic dictionary of [34] between
these geometries and the T ρ̂ρ (SU(N)) Gaiotto-Witten theories [35] living on
the worldvolume of a D3-D5-NS5 system9.

Later, it was claimed in [24] that the NATD solution obtained from the
gravity dual of the Klebanov-Witten model [36] can be seen as the near-
horizon limit of a D4-NS5-NS5’ orthogonal intersection, whose worldvolume
dynamics is given at the conformal fixed point by the N = 1 mass defor-
mation of the N = 2 theories proposed in [25]. This is an extension to the
non-Abelian case of the relation between the Abelian T-duals of the N = 2
AdS5 × S5/Z2 and the N = 1 Klebanov-Witten solutions [37].

More generally, the rough idea is to use the AdS/CFT correspondence to
provide the missing information from string theory about the NATD grav-
ity solutions. A (consistent) field theory proposal is employed to complete
the background, even possibly smoothing out its singularities. In the works
enclosed in this thesis, our approach to this problem is the following:

8Indeed, the completed gravity solution arises as a regular superposition of Maldacena-
Núñez geometries [31], which yields the (singular) NATD solution in a certain limit.

9A brief introduction to these theories and their holographic duals is given in [23],
included in section 3.4 .
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� For the new AdS solutions generated using NATD, we systematically
study their properties, computing the quantized charges associated to
RR-fluxes, the holographic central charge/free energy and providing an
analysis of the preserved supersymmetry.

� We propose a Hanany-Witten brane set-up based on the quantized
charges.

� We use insights from four- and three-dimensional SCFTs with well-
known gravity duals to propose a consistent linear quiver, regularizing
the former brane set-up by a motivated addition of flavour branes. It
will be conjectured that this field theory is dual to a regular background
with finite internal space, from which the non-Abelian T-dual solution
arises in a certain limit.

Other than generating and holographically interpreting supergravity so-
lutions generated with NATD, it is also interesting to consider how the new
solutions relate to known classes of supersymmetric geometries. In some
cases, this might even lead to the extension of such classifications. Applied
techniques can then be utilized to construct other classes of geometries, even
if not directly related to NATD backgrounds.

1.2 Classification of the new solutions

Killing spinor techniques, such as the pure spinor formalism and G-structures
[38, 39], have been extensively used in the literature to find supersymmetric
classes of AdS solutions of supergravity with different amounts of preserved
supersymmetry, even if originally devised for N = 1 backgrounds10. Using
a decomposition Ansatz for the Killing spinors into external and internal
components, the dilatino and gravitino variations are reduced to constrains
on the internal manifold. The Killing spinor equations can then be rephrased,
in terms of polyforms, as conditions for a certain reduction of the structure
group of the corresponding internal manifold.

Typical examples in the NATD literature are gravity backgrounds with
RR-fluxes dual to N = 1 theories (see e.g. [41, 42]), in which internal spinors
defined in a 4- or 6-dimensional manifold give rise to a SU(3)-structure for
that space. This is the simplest generalization of Calabi-Yau manifolds, per-
mitting string compactifications for backgrounds supported with either Kalb-
Ramond or RR-fluxes, in which the non-vanishing torsion classes (e.g. the

10String compactifications of flux backgrounds, some of them of phenomenological in-
terest, were a motivation for these methods (see [40] for a review).
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non-closure of the holomorphic 3-form) deforming the Calabi-Yau are sourced
by the non-trivial fluxes.

The effect of NATD on the Killing spinors is well-known11. The RR-
fluxes transform under the spinor representation of NATD [6], which can be
derived from the Lorentz transformation relating the frame of left and right
movers. Applying the aforementioned decomposition to the Killing spinors,
NATD has the effect of rotating one internal spinor w.r.t. the other, typically
reducing the structure group [44, 42]. This general pattern helps identifying
the class of solutions the new background should belong to.

The G-structure formalism was used in [43] to embed a new N = 2 AdS4

background, generated with NATD, in 11D. This solution has no electric flux
and should therefore fit into the classification of [45, 46]. This solution is the
second possible candidate to provide a holographic realization of the 3d-
3d correspondence between three-dimensional cycles wrapped by M5-branes,
and the 3D N = 2 CFTs resulting from the twisted compactification of the
corresponding 6D (2, 0) theory. The first explicit solution within this class
was the uplift [47, 48] from 7D gauged supergravity of the Pernici-Sezgin
solution [49], constructed in the 80s.

Considering AdS3 × S2 solutions dual to 2D N = (0, 4) SCFTs, a cel-
ebrated example is the AdS3 × S2 × CY3 near-horizon of the Maldacena-
Strominger-Witten 4D black-hole [50], which results from M-theory com-
pactified on CY3 × S1. The dual N = (0, 4) CFT, arising from M5-branes
wrapping a 4-cycle inside the CY3, allows for the counting of black hole mi-
crostates (the Bekenstein-Hawking entropy and subleading corrections to it)
in terms of the central charge of the CFT [51, 52]. This solution has a small
superconformal symmetry12, with an SU(2) R-symmetry, but other realiza-
tions of the algebra are known to exist, what suggested that a larger class
of such black hole near-horizons should be available. Addressing this point,
N = (0, 4) AdS3 × S2 solutions with SU(2)× SU(2) R-symmetry, compati-
ble with a large superconformal algebra, are found in [54]. These lie outside
the known class of solutions engineered in [55] and therefore motivated its
extension to include the new backgrounds. This was done in [56], where the
aforementioned decomposition method was applied to the Killing spinors,
in order to get the most general Ansatz compatible with a SU(2)-structure
internal manifold13.

11For a review of SU(3) and SU(2) structures on six-dimensional internal manifolds,
and details of the effect of NATD on them, see the appendices of [43], section 3.2, and the
references therein.

12The different possible 2D N = 4 superconformal algebras are introduced e.g. in [53].
13The minimal SU(2) R-symmetry of these solutions was assumed to be realized geo-

metrically as the SU(2) isometry from the S2 factor in the AdS3 × S2 Ansatz. The large
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An important example of allowing the R-symmetry to be manifest as an
isometry for the bosonic supergravity fields is the comprehensive classifica-
tion work done for type IIB AdS4 × S2 × S2 solutions [32, 33]. This was
motivated by the search for holographic duals to three dimensional N = 4
CFTs arising from 4D SYM with a planar defect. The dual SCFTs, fixed
points of the T ρ̂ρ (SU(N)) theories of Gaiotto and Witten [35], admit a global
SO(2, 3)×SO(4) symmetry, with the SO(4) ' SO(3)×SO(3) R-symmetry
holographically related to an isometry of the bulk geometry. This demanded
that the internal manifold should be written as S2×S2×Σ2 with a Riemann
surface Σ2, which was in fact highly restricted, even allowing to explicitly
solve the Killing spinor equations without resorting to the geometrical tech-
niques outlined above. As a result, a full classification of type IIB N = 4
AdS4×S2×S2×Σ2 backgrounds, arising in the near-horizon limit of D3-D5-
NS5 brane intersections, was given in terms of a pair of harmonic functions
defined on the Riemann surface Σ2, which was either an infinite strip or an
annulus. This permitted a field theory interpretation in terms of, respec-
tively, linear or circular quiver realizations of the Gaiotto-Witten theories
[34, 57].

As we mentioned before, this is the class of AdS/CFT pairs used in [23],
see section 3.4, to embed a new type IIB solution generated with NATD
from the N = 4 AdS4 × S3 × S2 geometry, arising in the near-horizon limit
of a D2-D6 brane system14. This non-Abelian T-dual background could be
associated this way to a regularised dual linear quiver. Interestingly, the
Abelian T-dual of this same IIA seed solution was already recovered in [57]
in a certain limit of a circular brane set-up, dual to a circular-quiver version
of the Gaiotto-Witten theories.

Turning our attention to gravity backgrounds beyond conformal solu-
tions, which can be phenomenologically relevant to flux compactifications, a
large number of attempts have been made to construct/classify solutions
with external Minkowski space and minimal supersymmetry, see [59, 60,
38, 61] or [62, 63, 64, 65] for recent results. The relatively low amount of
(super)isometries entails significant difficulties to solve the reduced Killing
spinor equations. Progress was made in [66] for backgrounds containing a
Mink4 factor, assuming N = 2 supersymmetry and a geometrically-realised

superconformal symmetry can then arise when an extra SU(2)R factor emerges from the
Killing spinor bilinears derived in the analysis.

14This geometry can be obtained from the N = 8 AdS4×S7/Zk solution of 11D super-
gravity, upon reduction to type IIA on the Hopf fibre (where the Zk orbifold is applied)
of one of the two 3-spheres inside the S7. This is in contrast to the IIA N = 6 gravity
dual of ABJM [58], also associated to a D2-D6 system, and arising from the reduction of
the same 11D solution, but on the Zk-orbifolded circle S1 ↪→ S7 → CP3.
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SU(2) R-symmetry, which allowed to recover AdS solutions15.
Inspired by this example, we tackled the problem of classifying type II

solutions with a Mink3×S3 factor in [67], in which the three-sphere allows for
the geometrization of a would-be SO(4) R-symmetry, instead of the S2×S2

factor assumed in [32] and subsequent works. In fact, our initial goal was to
find gravity duals of three-dimensionalN = 4 SCFTs by examining AdS4×S3

type II backgrounds, but this approach seemed too restrictive and allowing
for a more general Mink3 factor turned out to be more convenient.

Besides, it is worth highlighting that even if the assumption of the S3

factor will lead to solutions with N > 1, our classification could still be of
interest for phenomenological applications, as we expect to be able to reduce
supersymmetry through a deformation of the 3-sphere.

The structure of this thesis, in the collection-of-papers format, is as fol-
lows: In section 2, we review the worldsheet formalism of non-Abelian T-
duality, deriving the transformation rules for both the NS-NS and RR-sectors.
A copy of the papers on which this thesis is based is given in section 3. Next,
a technical summary of the results is provided in section 4, followed by a
more general discussion and conclusions in section 5. Last, a list of refer-
ences for this text is supplied, apart from the ones included in the copies of
the articles.

We remark that, following requirements of the PhD programme, the ab-
stract and conclusions of this thesis are written both in English and Spanish.

15Even if optional for supersymmetry, the R-symmetry is part of the superconformal
algebra required for the AdS factor. Remark that a 10D solution with a Minkd factor can
be regarded as a AdSp solution with p > d, in particular as AdSd+1:

ds2 = e2Ads2(Minkd) + ds2
10−d = e2B

(
e2ρds2(Minkd) + dρ2

)
+ ds2

9−d ,

where A and B are warp factors depending only on the internal manifolds M10−d and
M9−d, respectively.



2. Worldsheet formalism of non-
Abelian T-duality

We present below a brief introduction to the formulation of non-Abelian
T-duality (NATD) for the string sigma model. This follows closely and sum-
marizes the detailed review given in [12], complemented by [41] and [68].

2.1 Transformation of the NS-NS sector

Consider a 10D target space with an SU(2) isometry and metric written as:

ds2 = Gµν(x)dxµdxν + 2Gµi(x)dxµLi +Gij(x)LiLj , (2.1)

where µ = 1, 2, . . . , 7 run over the transverse-space directions and Li =
−iTr(tig−1dg), for i = 1, 2, 3 are the Maurer-Cartan forms, with ti the SU(2)
generators. The group element g ∈ SU(2) depends on the target space
isometry directions, realizing the SU(2) group manifold. We can choose to
parametrize g such that the corresponding coordinates are the Euler angles:

g = e
i
2
τ3 φ e

i
2
τ2 θ e

i
2
τ3 ψ , (2.2)

where θ ∈ [0, π], ψ ∈ [0, 4π], φ ∈ [0, 2π] and the τi =
√

2 ti are the Pauli
matrices, as SU(2) generators. On the other hand, the Kalb-Ramond field1

can be written as:

B = Bµν(x)dxµ ∧ dxν +Bµi(x)dxµ ∧ Li +
1

2
Bij(x)Li ∧ Lj . (2.3)

Remark that all the metric and B field coefficients do only depend, by con-
struction, on the transversal directions, same as for the dilaton Φ(x). The
only fields depending on the SU(2) directions are the Li forms.

1For the sake of generality, we take an unspecified B in this exposition. Remark,
however, that B = 0 for the seed solution in all examples considered in this thesis.
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The Lagrangian density for the NLSM describing the propagation of a
string in the above 10D target space is given by:

L = Qµν∂+X
µ∂−X

ν +Qµi∂+X
µLi− +QiµL

i
+∂−X

µ + EijL
i
+L

j
− , (2.4)

where we have introduced the embedding scalars {Xµ} for the transverse
directions2, Li± = −iTr(tig−1∂±g) and the coefficients

Qµν = Gµν +Bµν , Qµi = Gµi +Bµi , Qiµ = Giµ +Biµ ,

Eij = Gij +Bij , (2.5)

from which metric and B-field are read-off. In order to perform the NATD
procedure, we minimally couple the theory to the isometry group SU(2),
substituting partial for covariant derivatives,

∂±g −→ D±g = ∂±g − A±g , (2.6)

where A± is the SU(2) connection. We enforce it to be flat by adding the
Lagrange multiplier term −iTr(vF±), where F± = ∂+A− − ∂−A+ − [A+, A−]
is the curvature for A±. The resulting action is then invariant under

g → h−1g , v → h−1vh , A± → h−1A±h− h−1∂±h , (2.7)

for h ∈ SU(2). If we now integrate out the SU(2) connection (i.e. find its
equations of motion and substitute it back into the action) the dual action
will be reached. However, the new theory will still depend on the spectator
fields Xµ, the Euler angles and also the Lagrange multipliers vi. In order to
preserve the number of d.o.f. , we gauge fix the SU(2) isometry by setting
g = I, i.e. in eq. (2.2) we take θ = ψ = φ = 0. With this choice of gauge, the
original coordinates get substituted by the Lagrange multipliers vi, so that
the dual sigma model does only depend on them and on the spectator fields
Xµ.

We remark that other gauge fixings are possible (even mixing original
and dual coordinates), that might be useful e.g. in realizing some residual
isometries. The different choices are locally related by diffeomorphisms in
the NATD target space, as shown in section 2.2.3 of [12]. A general gauge
fixing is also discussed in appendix B of that paper.

After the g = I gauge fixing and a partial integration on the Lagrange
multiplier term, the EOMs of the gauge connection yield:

Ai+ = iM−1
ji (∂+vj +Qµj∂+X

µ) , (2.8)

Ai− = −iM−1
ij (∂−vj −Qjµ∂−X

µ) ,

2These are spectator fields under NATD.
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where we introduced the matrix M = E + f , with fij = fij
kvk and fij

k the
structure constants of SU(2). Substituting back Ai± into the gauged action,
we get the dual NLSM:

L̂ = Qµν∂+X
µ∂−X

ν + (∂+vi + ∂+X
µQµi)M

−1
ij (∂−vj −Qjµ∂−X

µ) . (2.9)

The metric and B-field of the new target space can now be read-off as the
symmetric and anstisymmetic part of the above coefficients w.r.t. the kinetic
terms of the new embedding scalars {Xµ, vi}. This yields a generalization of
the Buscher rules [2] to the non-Abelian case:

Q̂µν = Qµν −QµiM
−1
ij Qjν , Êij = M−1

ij ,

Q̂µi = QµjM
−1
ji , Q̂iµ = −M−1

ij Qjµ . (2.10)

From the path integral derivation of the former, one sees the dilaton suffers
a 1-loop shift:

Φ̂(x, v) = Φ(x)− 1

2
log(detM) . (2.11)

Correspondingly, the transformation of the worldsheet derivatives is

Li+ = −(M−1)ji (∂+vj +Qµj∂+X
µ) , (2.12)

Li− = (M−1)ij(∂−vj −Qjµ∂−X
µ) ,

while ∂±Xµ remain invariant. This represents a canonical transformation
between the pair of T-dual sigma models [69, 70].

For the examples considered in this thesis B = 0 in the seed solution, so
that Q = G and the above (2.10) simplifies to:

Ĝµν = Gµν −M−1
ij GµiGνj , Ĝij =

1

2
M−1

(ij), Ĝiµ = −1

2
M−1

[ij]Gjµ

B̂iµ = −1

2
M−1

(ij)Gjµ , B̂ij =
1

2
M−1

[ij] , (2.13)

where now the matrix M reduces to Mij = Gij +
√

2 εijkvk. Remark that, in
general, Kalb-Ramond 2-form components are generated for the dual back-
ground, even if the original seed solution had none.

2.2 Transformation of spinors and the RR

sector

In order to determine how the RR sector transforms under NATD, we first
need to derive the action on the spinors of the Lorentz transformation relating
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left and right movers. We start rewriting the metric of the original target
space in terms of the frame fields

ds2 = ηABe
AeB + eaea , (2.14)

where the vielbein is chosen to be

eA = eAµdx
µ , ea = κajL

j + λaµdx
µ , (2.15)

with A = 1, 2, . . . , 7 and a = 1, 2, 3. Left and right movers transform differ-
ently under NATD, as given in (2.12), leading to two different sets of frame
fields after the transformation:

ê+ = −κM−T (dv +QTdX) + λdX ,

ê− = κM−1(dv −QdX) + λdX . (2.16)

However, these frame fields still describe the same geometry, and must there-
fore be related by a Lorentz transformation, ê+ = Λ ê−, which can be found
to be

Λ = −κM−TMκ−1 = −κ−TMM−TκT . (2.17)

The action Ω induced by this Lorentz transformation on spinors is then given
by:

Ω−1ΓaΩ = Λa
bΓ

b . (2.18)

For NATD performed on a freely acting SU(2) isometry, Ω reads3:

Ω = Γ11
−Γ123 + ζaΓ

a

√
1 + ζaζa

, (2.19)

where Γ11 is the product of all ten gamma matrices, with (Γ11)2 = I, and
ζa = κaiv

i/(detκ) (for Bij = 0). Let us remark that Ω leaves invariant the
gamma matrices ΓA corresponding to the transverse directions.

We are now ready to introduce the action of NATD on the RR sector.
Employing the democratic formalism [71], RR fields are combined with their
Hodge duals4 to form the following bispinors:

P =
eΦ

2

4∑
n=0

/F 2n+1 , P̂ =
eΦ̂

2

5∑
n=0

/̂F 2n , (2.20)

3A general form of Ω for an isometry group acting without isotropy is given in [19].
4Higher p-forms are related to the lower ones by Fp = (−1)[

p
2 ] ? F10−p, with the Hodge

dual given by:

(?Fp)µp+1·µD
=

1

p!

√
|g| εµ1...µD

Fµ1···µp
p
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where /F p =
1

p!
Γµ1...mpF

µ1µ2...mp
p using the Clifford map. Remark that F2n+1

odd-degree fluxes correspond to type IIB and F2n even-degree fluxes to type
IIA. The action of NATD on the RR sector, from a type IIB to a IIA solution,
is then given by:

P̂ = P · Ω−1 , (2.21)

where Ω is given in eq. (2.19). If starting from a type IIA to a IIB solution

instead, the role of P and P̂ is exchanged. Thanks to this relation, given
the RR sector of a seed solution, we can determine the fluxes needed for the
T-dual background to be also a solution of type II supergravity.

In general, fluxes along the duality directions are mapped as Fp →
F̂p−1, F̂p−3 under NATD, while the map works the other way round for fluxes

not along the duality directions, Fp → F̂p+1, F̂p+3. This is a generalization

of the Abelian case, in which Fp → F̂p±1, and underlies the change in the
dimensionality of the D-branes under NATD, mapping p-branes to (p ± 1)
and (p ± 3)-branes5. A review of the “recipes” relating the original and T-
dual fluxes for the simple case of NATD on a round S3 can be found in the
appendix B of our [23], see section 3.4, where also the Abelian case [3] is
reviewed. The more general prescription for NATD applied on a squashed
S3 is treated in the appendices of [12, 68].

Knowledge of the spinor representation Ω of NATD also allows us to
transform the ten-dimensional MW Killing spinors, say ε1 and ε2, of a type
II supergravity solution to get the spinors ε̂1 and ε̂2 associated to the T-dual
solution:

ε̂1 = ε1 , ε̂2 = Ω ε2 .

In the examples considered, where NATD is always applied to the internal
space, the above transformation reduces to a rotation of one of the Killing
spinors w.r.t. the other. This has the effect of reducing the structure group
of the internal space. A fast review of the transformation of pure spinors and
G-structures under NATD is given in the appendices of the enclosed work
[43], in section 3.2. An extended introduction can be also found in [41].

5Remark, however, that this does not imply that the number of independent charges
is doubled under NATD. Sometimes, some of the would-be branes are found not to be
BPS, see e.g. [54], included in section 3.1. In other examples, some branes dielectrically
expand into others of higher dimensionality, and are interpreted to actually describe the
same d.o.f.s. This is discussed in the results section 4 .
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1 Introduction

It is not surprising that supersymmetric AdS3×S2 solutions to 11D supergravity [1, 2] bear

a striking resemblance to theirAdS5×S2 counterparts [3]; obvious cosmetic differences, such

as supersymmetry and G-structures,1 are ultimately tied to dimensionality. In common, we

note that both spacetimes possess manifest SU(2) isometries, dual to the R-symmetries of

1Killing spinors, or supersymmetry variations, transform as a doublet under the SU(2) R-symmetry and

are tensored with the Killing spinors of AdSd+1, which have 2
d

2 complex components.
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the respective 2D N = (0, 4) [4, 5] and 4D N = 2 [6, 7] SCFTs, and that supersymmetric

geometries are in one-to-one correspondence with second-order PDEs. For the 1
2 -BPS

bubbling geometries of Lin, Lunin and Maldacena (LLM), one famously encounters the

3D continuous Toda equation [3], while a similar local analysis in [2] has revealed a 5D

analogue for 1
4 -BPS geometries:

y ∂y
(

y−1∂yJ
)

= d4
(

J · d4sech
2ζ
)

, (1.1)

where the internal space exhibits SU(2)-structure.2 Above ζ is a scalar depending on the

5D coordinates (y, xi), J is the Kähler-form of the 4D base and d4 denotes the pull-back of

the derivative to the base. The 4D base corresponds to an almost Calabi-Yau two-fold [8].

Finding explicit supersymmetric geometries is thus equivalent, at least locally, to solv-

ing these PDEs. Despite the difficulties, we have witnessed a growing number of AdS5×S2

geometries, and associated Toda solutions; starting with early constructions from gauged

supergravity [9], through examples found directly in 11D [10],3 recently a large number of

solutions have been constructed by exploiting an added isometry and a connection to elec-

trostatics [7, 12–14]. More recently, exotic solutions without an electrostatic, or with only

an emergent electrostatic description have been found [15, 16]. Relevant to this current

work, it is noteworthy that the SU(2) non-Abelian T-dual of AdS5 × S5 also corresponds

to a solution in this class [17].

In contrast, little is known about solutions to (1.1). Given the current literature, if we

eliminate geometries exhibiting more supersymmetry, which one can disguise as AdS3 ×S2

(see section 4 of [2]), there is no known 1
4 -BPS geometry that solves (1.1). In this paper,

after uplift to 11D, we identify the non-Abelian T-dual of AdS3×S3×CY2 [17] as the first

example in this class. Admittedly, this example solves (1.1) in the most trivial way, since

∂yJ = d4ζ = 0. That being said, it should be borne in mind that the linear supersymmetry

conditions are satisfied non-trivially. It is worth appreciating an obvious parallel to Abelian

T-duality, where the uplifted geometry is an example of an SU(3)-structure manifold,

namely Calabi-Yau.

Before proceeding, we touch upon the generality of (1.1). It is not clear if all su-

persymmetric 1
4 -BPS AdS3 × S2 solutions in 11D with SU(2)-structure satisfy (1.1). In-

deed, the analysis of LLM made the simplifying assumption that there are no AdS5 × S2

geometries with purely magnetic flux. Similarly, [2] precluded both purely electric and

magnetic fluxes [2], a choice that is supported by AdS-limits of wrapped M5-brane geome-

tries [1, 18]. For LLM, it can be explicitly shown that extra fluxes are inconsistent with

supersymmetry [19]4 and an attempt at a more general analysis for AdS3 × S2 geome-

tries appeared in [22], which derives the supersymmetry conditions in all generality, but

unfortunately fails to constrain the fluxes greatly. Using these conditions, one can show

that the existence of a single chiral spinor internally, corresponding to SU(3)-structure,

2SU(2)-structure in 6D is equivalent to two canonical SU(3)-structures.
3The 11D solution can be dimensionally reduced and T-dualised, where it becomes a quotient of AdS5×

S5. This provides no contradiction with a no-go result for 1
2
-BPS AdS5 in IIB ref. [11].

4Generalising the Killing spinor ansatz [20] allows one to also describe maximally supersymmetric 11D

solutions or 1
2
-BPS pp-waves, such as [21].
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implies Calabi-Yau.5 For SU(2)-structure manifolds, we note that the non-Abelian T-dual

of AdS3 × S3 × CY2 fits neatly into the classification of [2]. In contrast, the non-Abelian

T-dual of AdS3 × S3 × S3 × S1 preserves the same supersymmetry, N = (0, 4) in 2D, yet

falls outside this class, thus motivating future work to extract the more general class [24].

Non-Abelian T-duality has revealed itself as a powerful tool to construct explicit AdS

solutions that seemed unreachable by other means. In this work we present some further

examples. Interesting solutions generated this way6 are the only explicit AdS6 solution to

Type IIB supergravity constructed in [37]7 and the recentN = 2 AdS4 solution to M-theory

with purely magnetic flux constructed in [42], which provides the only such explicit solution

besides the Pernici-Sezgin background derived in the eighties [43]. Both these solutions

may play an important role as gravity duals of, respectively, 5d fixed point theories arising

from Type IIB brane configurations, probably from 7-branes as in [44] (see [45]), and of

3d SCFTs arising from M5-branes wrapped on 3d manifolds in the context of the 3d-3d

correspondence [46]. In turn, the new AdS3 backgrounds that we construct in this paper

may provide the holographic duals of new 2D large N = (0, 4) field theories arising from

D-brane intersections. Other AdS3 backgrounds dual to N = (0, 2) 2D field theories haven

been constructed recently in [28] (see also [47]) by compactifying on a 2D manifold the

Klebanov-Witten background, combined with Abelian and non-Abelian T-dualities.

An essential difference with respect to its Abelian counterpart, is that non-Abelian

T-duality has not been proved to be a symmetry of String Theory. In the context of the

AdS/CFT correspondence one could thus expect new AdS backgrounds from known ones

with very different dual CFTs. Furthermore, these CFTs are only guaranteed to exist

in the strong coupling regime, since there is no reason to expect that the transformation

should survive α′ or 1/N corrections.

Even if the understanding of the CFT interpretation of the transformation is today

very preliminary, some results point indeed in these directions. The non-Abelian T-dual of

the AdS5×S5 background constructed in [17] has been shown for instance to belong to the

family of N = 2 Gaiotto-Maldacena geometries [7], proposed as duals of the, intrinsically

strongly coupled, TN Gaiotto theories [6]. Similarly, the non-Abelian T-dual of the AdS5×

T 1,1 background [48] gives rise to an AdS5 background [49] that belongs to the general class

of N = 1 solutions in [50, 51], whose dual CFTs generalize the so-called Sicilian quivers

of [52], and are the N = 1 analogues of the N = 2 solutions in [6].

5A small caveat here is that one of the 6D spinors ǫ± was assumed to be chiral, however the supersym-

metry constraints on scalar bilinears are strong enough to ensure ǫ− = −iǫ+. The Calabi-Yau conditions

dJ = dΩ = 0 then follow. We thank D. Tsimpis for raising this loop-hole.
6See also [25–28] for further AdS solutions and [29–36] for a more varied sample of the NAT

duality literature.
7Supersymmetry imposes severe constraints to the existence of AdS6 solutions in ten and eleven dimen-

sions [38, 39]. Prior to [37] the only known explicit solution to Type II supergravities was the Brandhuber

and Oz background [41], which was shown to be the only possible such solution in (massive) IIA in [38].

Later [39] proved the non-existence of AdS6 solutions in M-theory and derived the PDEs that such solutions

must satisfy in Type IIB (see also [40]), to which the example in [37], constructed from the Brandhuber

and Oz solution via non-Abelian T-duality, provides the only known explicit solution (besides the Abelian

T-dual).
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Some works have tried to explore in more depth the CFT realization of AdS back-

grounds generated through non-Abelian T-duality in different dimensions [25, 45]–[28]. Its

interplay with supersymmetry [53] and phenomenological properties of the dual CFTs, such

as the type of branes generating the geometry, the behavior of universal quantities such as

the free energy, or the entanglement entropy, the realization of baryon vertices, instantons,

giant gravitons, are by now quite systematized (see [54]). Very recently, we have witnessed

as well an exciting and novel application in the exchange of particles with vortices [55].

In this paper we will analyze some of these properties in the 2D holographic duals to the

new AdS3 backgrounds that we generate. We will see that they fit in the general picture

observed in other dimensions.

Perhaps the most puzzling obstacle towards a precise CFT interpretation of non-

Abelian T-duality is the fact that even if the group used to construct the non-Abelian

T-dual background is compact, the original coordinates transforming under this group are

replaced in the dual by coordinates living in its Lie algebra. Non-compact internal direc-

tions are thus generated, which are hard to interpret in the CFT. We will also encounter

this problem for the backgrounds generated in this paper.

The paper is organized as follows. In section 2 we present the first explicit example of

an AdS3 × S2 geometry belonging to the general class of solutions [2]. This is constructed

by uplifting the non-Abelian T-dual of AdS3 × S3 ×CY2 derived in [17] to 11D. In section

3 we recall the basic properties of the AdS3 × S3 × S3 × S1 background that will be the

basis of the new solutions that we present in sections 4, 5 and 6. In section 4 we construct

the non-Abelian T-dual of this background with respect to a freely acting SU(2) on one

of the S3. By exploring the solution we derive some properties of the associated dual

CFT such as the central charge and the type of color and flavor branes from which it may

arise. We suggest a possible explicit realization in terms of intersecting branes. In section

5 we construct one further solution through Abelian T-duality plus uplift to 11D from the

previous one and show that it provides an explicit example of an AdS3 × S2 geometry in

11D belonging to a new class that is beyond the ansatz in [2]. In section 6 we present a new

AdS3 × S2 × S2 solution to Type IIB obtained by further dualizing the solution in section

3 with respect to a freely acting SU(2) on the remaining S3. By analyzing the same brane

configurations we argue that the field theory dual shares some common properties with the

CFT dual to the original AdS3×S3×S3×S1 background but in a less symmetric fashion.

In section 7 we analyze in detail the supersymmetries preserved by the different solutions

that we construct. We show that the solutions constructed through non-Abelian T-duality

from the AdS3×S3×S3×S1 background exhibit large N = (0, 4) supersymmetry. This is

supported by the analysis of the central charges performed in sections 4 and 6. Section 8

contains our conclusions. Finally, in the appendix we study in detail the effect of Hopf-fibre

T-duality in the AdS3×S3×S3×S1 background to further support our claims in the text

concerning the isometry supergroup of our solutions.

2 AdS3 × S2 geometries in 11D with SU(2)-structure

In this section we demonstrate that the non-Abelian T-dual of the D1-D5 near-horizon,

a solution that was originally written down in [17], uplifts to 11D, where it provides the

– 4 –
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first explicit example of a 1
4 -BPS AdS3 × S2 geometry with an internal SU(2)-structure

manifold. We recall that this class has appeared in a series of classifications [1, 2, 18, 22],

yet until now, not a single explicit example in this class was known. It is indeed pleasing

to recognise that the chain of dualities that generates this new example is no more than

a simple non-Abelian generalisation of a well-known mapping from the AdS3 × S3 × CY2
geometry of Type IIB supergravity into the 11D supergravity class AdS3 × S2 × CY3.

8

It is worth noting that until relatively recently [17] (also [49]), the workings of this new

mapping, which is made possible through non-Abelian T-duality, were also unknown.

We begin by reviewing the classification of ref. [22], which has an advantage over

other approaches [1], since it uses local techniques and is thus guaranteed to capture all

supersymmetric solutions. Moreover, this work also extends the ansatz of ref. [2] and

dispenses with the need for an analytic continuation from S3 × S2 to AdS3 × S2. Based

on symmetries, the general form for a supersymmetric spacetime of this type may be

expressed as

ds211 = e2λ
[

1

m2
ds2(AdS3) + e2Ads2(S2) + ds26

]

,

G4 = Vol(AdS3) ∧ A+Vol(S2) ∧H+ G, (2.1)

where λ,A denote warp-factors depending on the coordinates of the 6D internal space and

A,H and G correspond to one, two and four-forms, respectively, with legs on the internal

space. The constant m denotes the inverse radius of AdS3. The supersymmetry conditions,

which are given in terms of differential conditions on spinor bilinears, further built from

two a priori independent 6D spinors ǫ±, can be found in [22].

Setting A = G = 0, one finds that only a particular linear combination, ǫ̃ = ǫ+± iγ7ǫ−
appears in the effective 6D Killing spinor equations, allowing one to recover the work of [2].

In this simplifying case one can show that the internal space must be of the form [2, 22]

ds26 = gijdx
idxj + e−6λ sec2 ζdy2 + cos2 ζ(dψ + P )2 (2.2)

with P a one-form connection on the 4D base with metric gij . The SU(2)-structure is then

specified by 2 one-forms, K1 ≡ cos ζ(dψ+ P ), K2 ≡ e−3λ sec ζdy, the Kähler-form, J , and

the complex two-form, Ω, on the base.

The remaining two-form appearing in the field strength, G4, is fully determined by

supersymmetry,

H = −yJ −
1

2m
∂y(y sin

2 ζ)dy ∧ (dψ + P )

−
y

m
cos ζ sin ζd4ζ ∧ (dψ + P ) +

y cos2 ζ

2m
dP. (2.3)

8See appendix B of ref. [56] for a concrete realisation of the (Abelian) duality chain.
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The above class of geometries is subject to the supersymmetry conditions:

2my = e3λ sin ζ,

eA =
sin ζ

2m
,

d(e3λ cos ζΩ) = 0,

2md(e3λ+2AJ) = d4P ∧ dy. (2.4)

Details of how (1.1) is implied by these conditions can be found in [2].

In order to identify a solution in this class, we start by recalling the non-Abelian T-dual

of AdS3 × S3 × T 4 [17], which provides a solution to massive IIA supergravity,

ds2IIA = ds2(AdS3) + dρ2 +
ρ2

1 + ρ2
ds2(S2) + ds2(T 4),

B2 =
ρ3

1 + ρ2
vol(S2), Φ = −

1

2
ln(1 + ρ2),

m = 1, F2 =
ρ3

1 + ρ2
vol(S2),

F4 = vol(AdS3) ∧ ρdρ+ vol(T 4), (2.5)

where following [17], we have suppressed factors associated to radii for simplicity. As a

consequence, the AdS3 metric is normalised so that Rµν = −1
2gµν , whereas S

2 is canonically

normalised to unit radius.

We next perform two T-dualities along the T 4, the coordinates of which we label,

x1, . . . x4. Performing T-dualities with respect to x1 and x2, we can replace the Romans’

mass, m = 1, with higher-dimensional forms, while leaving the NS sector unaltered. In

addition to the NS two-form, the geometry is then supported by the following potentials

from the RR sector,

C1 =
1

2
(x1dx2 − x2dx1 + x3dx4 − x4dx3),

C3 =
ρ3

1 + ρ2
vol(S2) ∧ C1. (2.6)

We note that dC1 = J , where J is the Kähler form on T 4 and the Bianchi for F4, namely

dF4 = H3 ∧F2 is satisfied in a trivial way since F4 = dC3 = B2 ∧J . We can now uplift the

solution on a circle to 11D by considering the standard Kaluza-Klein ansatz,

ds211 = (1 + ρ2)
1
3

[

ds2(AdS3) +
ρ2

1 + ρ2
ds2(S2) + dρ2 + ds2(T 4)

]

+ (1 + ρ2)−
2
3Dz2,

G4 = vol(S2)

[

ρ3

1 + ρ2
J +

ρ2(ρ2 + 3)

(1 + ρ2)2
dρ ∧Dz

]

, (2.7)

where we have defined Dz ≡ dz + C1.

– 6 –
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Adopting m = 2, so that normalisations for AdS3 agree, and up to an overall sign in H,

which can be accommodated through the sign flip ρ ↔ −ρ, we find that the supersymmetry

conditions (2.4) are satisfied once one identifies accordingly

y = ρ, eλ = (1 + ρ2)
1
6 , eA =

ρ

(1 + ρ2)
1
2

, P = C1,

J = dx1 ∧ dx2 + dx3 ∧ dx4,

Ω = (dx1 + idx2) ∧ (dx3 + idx4). (2.8)

Thus the non-Abelian T-dual plus 11D uplift of the D1-D5 near horizon fits in the classifi-

cations [1, 2, 18, 22]. It is easy to see that one can replace T 4 with K3 and the construction

still holds. It is also easy to see that the above solution can be derived on the assumption

that the base is Calabi-Yau and that λ, ζ only depend on y. Indeed, this is a requirement

of the 6D SU(2)-structure manifold to be a complex manifold [22]. In this case, the super-

symmetry conditions imply e3λ cos ζ is a constant. We can then solve for λ, ζ and A giving

us the above solution.

Another interesting feature of the 11D solution is that in performing the classification

exercise using Killing spinor bilinears [2, 22], one finds a U(1) isometry that emerges from

the analysis for free. Often this U(1) corresponds to an R-symmetry, for example [3, 23],

but in this setting, the relevant superconformal symmetry in 2D either corresponds to small

superconformal symmetry with R-symmetry SU(2), or large superconformal symmetry with

R-symmetry SU(2)×SU(2). There appears to be no place for a U(1) R-symmetry and it is

an interesting feature of solutions fitting into the class of [2] that the U(1) is the M-theory

circle and the Killing spinors are uncharged with respect to this direction.9

In the rest of this paper, we study non-Abelian T-duals of another well-known 1
2 -BPS

AdS3 solution with N = (4, 4) supersymmetry, namely AdS3×S3×S3×S1, where we will

find a new supersymmetric solution that does not fit into the class in [2].

3 The AdS3 × S3 × S3 × S1 background with pure RR flux

In this section we recall the basic properties of the AdS3×S3×S3×S1 background [57]–[58],

which will be the basis of our study in the following sections.

The AdS3 × S3 × S3 × S1 background is a half-BPS solution of Type II string theory

supported by NS5-brane and string flux. In this paper we will be interested in its realization

in Type IIB where it is supported by D5 and D1-brane fluxes [59]. This description arises

after compactifying on a circle the AdS3×S3×S3×R near horizon geometry of a D1-D5-

D5’ system where the two stacks of D5-branes are orthogonal and intersect only along the

line of the D1-branes [57, 60, 61]. How to implement the S1 compactification has remained

unclear (see [59]), and it has only been argued recently [62] that the R instead of the S1

9In 11D one can identify the two projection conditions to verify that supersymmetry is not en-

hanced. From CY2 directions, we inherit Γ6789η = −η, the rotation on the 11D spinor becomes

η = exp[− 1
2
tan−1

(

1
ρ

)

Γχξz]η̃. One finds the additional projector, Γρz67η̃ = −η̃, thus confirming that

the 11D solution is indeed 1
4
-BPS.

– 7 –
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factor arising in the near horizon limit could just be an artefact of the smearing of the

D1-branes on the transverse directions prior to taking the limit. This reference has also

provided the explicit N = (4, 4) CFT realization conjectured in [58, 59, 63] for the field

theory dual. This CFT arises as the infrared fixed point of the N = (0, 4) gauge theory

living on the D1-D5-D5’ intersecting D-branes.

The AdS3 × S3
+ × S3

− × R metric is given by

ds2IIB = L2ds2(AdS3) +R2
+ds

2(S3
+) +R2

−ds
2(S3

−) + dx2 (3.1)

with

ds2(AdS3) = r2(−dt2 + dx21) +
dr2

r2
(3.2)

in Poincaré coordinates. Plus, the background is supported by a single non trivial RR flux

F3 = 2L2Vol(AdS3) + 2R2
+Vol(S

3
+) + 2R2

−Vol(S
3
−), (3.3)

with Hodge dual

F7 =

{

2L3Vol(AdS3) ∧

(

−
R3

+

R−
Vol(S3

+) +
R3

−

R+
Vol(S3

−)

)

+
2R3

+R
3
−

L
Vol(S3

+) ∧Vol(S3
−)

}

∧ dx (3.4)

We take gs = 1 such that the dilaton is zero and Einstein’s equations are satisfied only when

1

L2
=

1

R2
+

+
1

R2
−

. (3.5)

This background has a large invariance under SO(4)+ × SO(4)− spatial rotations.

Of these SU(2)+R × SU(2)−R correspond to the R-symmetry group of the N = (0, 4) field

theory living at the D1-D5-D5’ intersection, and SU(2)+L × SU(2)−L to a global symmetry.

The field theory has gauge group U(N1), with N1 the number of D1-branes, and a global

symmetry SU(N+
5 ) × SU(N−

5 ), with N+
5 and N−

5 the number of D5 and D5’ branes. The

two R-symmetries give rise to two current algebras at levels depending on the background

charges, and to a large N = (4, 4) superconformal symmetry in the infra-red [58, 59, 62, 63].

The study of the supergravity solution allows to derive properties of the dual field

theory that we will be able to mimic after the non-Abelian T-duality transformation. In

the next subsections we analyze the quantized charges, some brane configurations such as

baryon vertices and ’t Hooft monopoles, and the central charge associated to the AdS3 ×

S3 × S3 × S1 background.

3.1 Quantized charges

The F7 and F3 fluxes generate D1 and D5-brane charges given by:

N1 =
1

2πκ210T1

∫

(−F7) =
R3

+R
3
−δx

8Lπ2
, (3.6)

– 8 –
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where δx is the length of the x-direction interval, which should be chosen such that N1 is

quantized, and

N+
5 =

1

2πκ210T5

∫

S3
−

(−F3) = R2
− , N−

5 =
1

2πκ210T5

∫

S3
+

(−F3) = R2
+ , (3.7)

which should also be quantized. Accordingly, one can find D1 and D5 BPS solutions. The

D1 are extended along the {t, x1} directions and couple to the potential

C2 = L2r2dt ∧ dx1 . (3.8)

Changing coordinates to














r = r+ r−

x =
R2

+
√

R2
+ +R2

−

log r+ −
R2

−
√

R2
+ +R2

−

log r− ,
(3.9)

the metric becomes the near horizon limit of the intersecting D1-D5-D5’ configuration [57,

60, 61]:

N+
5 D5 : 012345

N−
5 D5′ : 016789

N1D1 : 01 (3.10)

with dx22 + · · · + dx25 = dr2+ + r2+ds
2(S3

+), dx
2
6 + · · · + dx29 = dr2− + r2−ds

2(S3
−), with the

D1-branes smeared on these directions:

ds2IIB = L2r2+r
2
−(−dt2 + dx21) +R2

+

dr2+
r2+

+R2
−

dr2−
r2−

+R2
+ds

2(S3
+) +R2

−ds
2(S3

−) . (3.11)

The BPS D5-branes are then found lying on the (t, x1, r+, S
3
+), (t, x1, r−, S

3
−) directions.

The 2D N = (0, 4) gauge theory living on the worldvolume of the D1-branes and

intersecting D5-branes has been identified recently in [62]. A key role is played by the

chiral fermions of the D5-D5’ strings that lie at the intersection. Quite remarkably the

central charge of the N = (4, 4) CFT to which this theory flows in the infra-red has been

shown to coincide with the central charge of the supergravity solution, that we review in

subsection 3.4.

3.2 Instantons

The previous configuration of D5, D5’ branes joined in a single manifold, where the D1-

branes lie, admits a Higgs branch where the D1-branes are realized as instantons in the

D5-branes [58]. One can indeed compute the quadratic fluctuations of the D5-branes to

obtain the effective YM coupling:

SD5
fluc = −

∫

1

g2D5

F 2
µν with

1

g2D5

=
L2r2+r

2
−

4(2π)3
(3.12)

and check that the DBI action of the D1-branes satisfies

SD1
DBI = −

∫

16π2

g2D5

(3.13)

as expected for an instantonic brane.
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3.3 Baryon vertices and ’t Hooft monopoles

A D7-brane wrapped on S3
+×S3

−×S1 realizes a baryon vertex in the AdS3×S3
+×S3

−×S1

geometry, since it develops a tadpole of N1 units, as it is inferred from its CS action:

SD7
CS = 2π T7

∫

C6 ∧ F = −2π T7

∫

S3
+×S3

−
×S1

F7

∫

dtAt = −N1

∫

dtAt , (3.14)

where δx is taken to satisfy that N1 is an integer as in (3.6).

Similarly, there are two t’Hooft monopoles associated to the ranks of the two flavor

groups that are realized in the AdS3×S3
+×S3

−×S1 background as D3-branes wrapping the

S3
±. The corresponding Chern-Simons terms show that these branes have tadpoles of N∓

5

units that should be cancelled with the addition of these numbers of fundamental strings:

SD3±

CS = −2πT3

∫

S3
±

F3

∫

dtAt = N∓
5

∫

dtAt . (3.15)

3.4 Central charge

The central charge associated to the AdS3 × S3
+ × S3

− × S1 background can be computed

using the Brown-Henneaux formula [64], giving [58, 59]:

c = 2N1
N+

5 N−
5

N+
5 +N−

5

. (3.16)

This expression agrees with the central charge for a large N = (4, 4) CFT with affine

SU(2)± current algebras at levels k±: c = 2k+k−/(k+ + k−) [65], with k± = N1N
±
5 . A

strong check of the validity of the N = (0, 4) field theory in the D1-branes proposed in [62]

is that it correctly reproduces (3.16) at the infrared fixed point (see also [58]).

4 Non-Abelian T-dual AdS3 × S3 × S2 solution in IIA

In this section we dualize the AdS3 × S3
+ × S3

− × S1 solution with respect to the SU(2)−L
acting on the S3

−. This dualization was reported in [53] to produce a new AdS3 solution

preserving 16 supercharges. As we shall demonstrate in section 7 [53] overlooked an extra

implied condition and the preserved supersymmetry is in fact 8 supercharges. The solution

thus preserves large N = (0, 4) supersymmetry in 2D. In this section we present a detailed

study of the geometry and infer some properties about the field theory interpretation of

this solution.

4.1 Background

Applying the general rules in [66] (see also [53]) we find a dual metric

ds2IIA = L2ds2(AdS3) +R2
+ds

2(S3
+) +

4

R2
−

(

dρ2 +
R6

−ρ
2

64∆

(

dχ2 + sin2 χdξ2
)

)

+ dx2, (4.1)

where

∆ =
R6

− + 16R2
−ρ

2

64
. (4.2)
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The dual dilaton is given by

e−2Φ = ∆, (4.3)

while the NS 2-form is simply

B2 =
R2

−ρ
3

4∆
Vol(S2) (4.4)

where S2 refers to the 2-sphere parametrised by 0 ≤ χ ≤ π, 0 ≤ ξ < 2π in (4.1).

The dual RR-sector is given by

m =
R2

−

4
,

F̂2 = 0,

F̂4 = −
R3

−

4LR+

(

L4Vol(AdS3) +R4
+Vol(S

3
+)

)

∧ dx

+2ρ
(

L2Vol(AdS3) +R2
+Vol(S

3
+)

)

∧ dρ,

F̂6 = −2L2ρ2Vol(AdS3) ∧Vol(S2) ∧ dρ− 2R2
+ρ

2Vol(S3
+) ∧Vol(S2) ∧ dρ,

F̂8 = −
2L3R3

+ρ

R−
Vol(AdS3) ∧Vol(S3

+) ∧ dx ∧ dρ,

F̂10 =
2L3R3

+ρ
2

R−
Vol(AdS3) ∧Vol(S3

+) ∧Vol(S2) ∧ dx ∧ dρ.

Here F̂ = Fe−B2 and Fp = dCp−1 −H3 ∧Cp−3. Page charges will be computed from these

F̂ according to d ∗ F̂ = ∗jPage.

Applying the results in [66] this background is guaranteed to satisfy the (massive)

IIA supergravity equations of motion. Given that the S3 on which we have dualized has

constant radius the non-Abelian T-dual solution is also automatically non-singular. An

open problem though is the range of the new coordinate ρ, which as a result of the non-

Abelian T-duality transformation lives in R
+.

The generation of non-compact directions under non-Abelian T-duality is indeed a

generic feature that does not occur under its Abelian counterpart. In the last case the

extension of the transformation beyond tree level in string perturbation theory determines

uniquely the global properties of the, in principle non-compact, coordinate that replaces the

dualized U(1) direction. How to extend non-Abelian T-duality beyond tree level is however

a long standing open problem (see [67] for more details), and as a result we are lacking

a general mechanism that allows to compactify the new coordinates. For freely acting

SU(2) examples we need to account in particular for the presence of the non-compact ρ-

direction in the dual internal geometry, which poses a problem to its CFT interpretation,

where we can expect operators with continuous conformal dimensions. Note that in the

AdS3 × S2 × S1 duals under consideration in this paper one cannot hope that the same

mechanism that should be at work for compactifying the R factor arising in the original

AdS3×S3×S3×R geometry should be applicable. As argued in [62], the R instead of the

– 11 –
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S1 factor arising in the near horizon limit could be due to the smearing of the D1-branes

on the transverse directions prior to taking the limit, and could presumably be avoided

with a supergravity solution describing localized branes. This is not directly applicable to

our situation because ρ is not an isometric direction.

Previous approaches in the recent non-Abelian T-duality literature have tried to infer

global properties through imposing consistency to the dual CFT [45, 54]. We will also

follow this approach in this paper. We should start noticing that the new AdS3 metric

described by (4.1) is perfectly regular for all ρ ∈ [0,∞), with the 3d space replacing the

S3
− in the original background becoming R

3 for small ρ and R× S2 for large ρ. As shown

in [45, 54] the definition of large gauge transformations in the dual geometry can give

however non-trivial information about its global properties.

4.2 Large gauge transformations

The relevance of large gauge transformations is linked to the existence of non-trivial 2-cycles

in the geometry, where
1

4π2

∣

∣

∣

∣

∫

2−cycle
B2

∣

∣

∣

∣

∈ [0, 1) . (4.5)

In our non-singular metric we can only guarantee the existence of a non-trivial S2

for large ρ. For finite ρ and given the absence of any global information, we will resort

to the most general situation in which the cycle remains non-trivial and we need to care

about large gauge transformations. We will see that consistency of the CFT in this most

general situation will lead to the condition of vanishing large gauge transformations, which

is compatible with the original situation in which the two-cycle may in fact be trivial at

finite ρ.

Assuming the existence of a non-trivial two-cycle at finite ρ, the ρ dependence of B2

in (4.4) implies that large gauge transformations must be defined such that (4.5) is satisfied

as we move in this direction. This implies that for ρ ∈ [ρn, ρn+1] with ρn determined by

16ρ3n/(R
4
− + 16ρ2n) = nπ, B2 must be given by

B2 =

(

R2
−ρ

3

4∆
− nπ

)

Vol(S2) . (4.6)

The fluxes from which the Page charges are computed then change in the different

intervals to
F̂2 → F̂2 + nπ F̂0Vol(S

2)

F̂6 → F̂6 + nπ F̂4 ∧Vol(S2) ,
(4.7)

which will affect the values of the Page charges that we compute next.

4.3 Quantized charges

The transformation of the RR fluxes under non-Abelian T-duality implies that the D1 color

branes of the original background transform into D2-branes extended on {t, x1, ρ} and D4-

branes on {t, x1, ρ, S2}. Analogously, the D5 flavor branes wrapped on the S3
− are mapped

into D2 and D4 branes wrapped on {t, x1, r−} and {t, x1, r−, S2} respectively, and the D5

transverse to the S3
− are transformed into D6 and D8 branes wrapped on {t, x1, r+, S3

+, ρ}

and {t, x1, r+, S3
+, ρ, S

2}, respectively. We show in this section that there are quantized

charges in the non-Abelian T-dual background that can be associated to these branes.

– 12 –
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4.3.1 Color branes

It is possible to define N2 and N4 quantized charges in the dual background that should

be associated to D2 and D4 color branes:

N4 =
1

2πκ210T4

∫

S3
+×S1

F̂4 =
R3

+R
3
−

16πL
δx , (4.8)

N2 =
1

2πκ210T2

∫

S3
+×S2×S1

F̂6 = nN4 , (4.9)

where n is the parameter labeling large gauge transformations. (4.9) is the value of the

D2 charge in the ρ ∈ [ρn, ρn+1] interval. Note that, as it seems to be quite generic under

non-Abelian T-duality, the condition imposed on the geometry by (4.8) is different, and in

fact incompatible, from the one that the original background satisfied, given by (3.6). A

re-quantization must thus be done in the new background.

Let us now analyze the condition (4.9). We first see that for zero n the charge associated

to the D2-branes vanishes. Second, as we change interval, N2 undergoes a transformation,

N2 → N2 −N4, that is very reminiscent of Seiberg duality [68]. This was proposed in [54]

as a way to relate the CFTs dual to the solution as we move in ρ. As stressed in [28]10 this

cannot be however the full story since there is a change in the number of degrees of freedom

as we move in ρ. This is explicit in the holographic free energies. The precise realization

in the CFT of the running of ρ remains at the very heart of our full understanding of the

interplay between non-Abelian T-duality and AdS/CFT. We hope we will be able to report

progress in this direction in future publications.

For the particular background considered in this paper it is only possible to find BPS

color and flavor branes when n = 0. In particular, color branes are D4-branes wrapped

on the {t, x1, ρ, S2} directions. Thus, we will take the view that ρ is restricted to the

fundamental region [0, ρ1], with ρ1 satisfying 16ρ31/(R
4
− + 16ρ21) = π. Choosing to end the

geometry at a regular point presents however other problems, now for the geometry, where

extra localized sources should be included. It was proposed in [28] that at these transition

points new gauge groups would be added to the CFT through an “unhiggsing” mechanism

not associated to an energy scale. Given that this mechanism relies in the existence of large

gauge transformations it does not seem applicable to our background. A full understanding

of the “unhiggsing” mechanism and its precise realization in the absence of an energy scale

remains as an interesting open problem.

4.3.2 Flavor branes

Let us now examine flavor branes in the dual background. We find the following quantized

charges in the dual background that should be associated to flavor branes:

Nf
8 = 2πF0 =

π

2
R2

− , Nf
6 =

1

2πκ210T6

∫

S2

F̂2 = nNf
8 , (4.10)

Nf
4 =

1

2πκ210T4

∫

S3
+

∫ ρn+1

ρn

dρ F̂4 , Nf
2 =

1

2πκ210T2

∣

∣

∣

∣

∣

∫

S3
+×S2

∫ ρn+1

ρn

dρ F̂6

∣

∣

∣

∣

∣

. (4.11)

10We would also like to acknowledge fruitful conversations with D. Rodŕıguez-Gómez on this issue.

– 13 –

32 3.1. New AdS3 × S2 T-duals with N = (0, 4) supersymmetry



J
H
E
P
0
8
(
2
0
1
5
)
1
2
1

Here we have made explicit the interval on which the ρ direction has to be integrated and

we have not restricted ourselves to vanishing large gauge transformations.

The first two charges in (4.10) correspond to the D8 and D6 flavor branes that originate

on the N+
5 D5-branes of the original background. Thus, our expectation is to find BPS D8

wrapped on {t, x1, r+, S
3
+, ρ, S

2} and BPS D6 wrapped on {t, x1, r+, S
3
+, ρ}. However, as

for the color branes, we also find that the D6 are never BPS unless R− = 0 and that the D8

(anti-D8 in our conventions) are BPS only in the absence of large gauge transformations.

This is again suggestive of a dual background where large gauge transformations are not

possible. In the absence of these the D5 flavor branes give rise to just D8 flavor branes in

the dual background.

The D5’ branes of the original background give rise in turn to D4-branes wrapped on

{t, x1, r−, S
2} and D2-branes wrapped on {t, x1, r−}, which turn out to be BPS only when

located at ρ = 0. In this position however both the DBI and CS actions of the D4 vanish,

leaving just D2-branes as candidate flavor branes.

4.3.3 A possible brane intersection?

Summarizing, we have found that there are only BPS color and flavor branes in the absence

of large gauge transformations, in which case there is only one color or flavor brane in the

non-Abelian T-dual background associated to each color or flavor brane of the original

theory. Note that this is essentially different from previous examples in the literature (for

instance [45, 54]) where both types of color and flavor branes were guaranteed to exist for

all n. We argue in the conclusions that this could be explained by the absence of non-trivial

2-cycles in our particular dual geometry.11

We have shown that the D1-branes are replaced by D4-branes wrapped on

{t, x1, ρ, S
2} and the D5 and D5’ flavor branes are replaced by D8-branes wrapped on

{t, x1, r+, S
3
+, ρ, S

2} and D2-branes wrapped on {t, x1, r−}, respectively. This is summa-

rized pictorially as

✟
✟D2

D1

66♠♠♠♠♠♠♠♠

((◗
◗◗

◗◗
◗◗

◗◗

D4

✟
✟D6

D5

66♠♠♠♠♠♠♠♠

((◗
◗◗

◗◗
◗◗

◗◗

D8

✟
✟D4

D5′

66♠♠♠♠♠♠♠♠

((◗
◗◗

◗◗
◗◗

◗◗

D2

Here we have also indicated the brane that turns out not to occur as a BPS configuration

even if expected a priori from the analysis of the fluxes.

Note that precisely a D1 → D4, D5 → D8, D5′ → D2 map is what one would

have obtained after (Abelian) T-dualizing the D1, D5, D5’ system along three directions

transverse to the D1 and the D5 and longitudinal to the D5’. This suggests a dual geometry

coming out as the near horizon limit of the brane intersection:

Nf
8 D8 : 012345789

Nf
2 D2 : 016

N4D4 : 01789 (4.12)

11In the examples in [45, 54] non-trivial S2 were guaranteed to exist due to the presence of singularities.
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In this brane intersection the SO(4)+ × SO(4)− symmetry of the original field theory is

replaced by a SO(4)+ × SU(2) symmetry. Of this, SU(2)+R × SU(2)R would correspond to

the R-symmetry group of a large N = (0, 4) field theory living at the intersection, and

the remaining SU(2)+L to a global symmetry. This is consistent with the central charge

computation in subsection 4.6 and with the supersymmetry analysis in section 7 (see also

the appendix). The field theory would moreover have gauge group U(N4) and a global

symmetry SU(Nf
8 ) × SU(Nf

2 ). Some field theory configurations that we present next are

compatible with this brane realization.

4.4 Instantons

A very similar calculation to the one in subsection 3.2 shows that the D4 color branes can

be realized as instantons in the D8 flavor branes. In this case

SD8
fluc = −

∫

1

g2D8

F 2
µν with

1

g2D8

=
L2r2+r

2
−ρ

2

(2π)6
(4.13)

and the DBI action of the D4-branes satisfies

SD4
DBI = −

∫

16π2

g2D8

, (4.14)

as expected for an instantonic brane.

4.5 Baryon vertices and t’Hooft monopoles

The original D7-brane baryon vertex configuration is mapped after the duality into a

D4-brane wrapped on S3
+ × S1 and a D6-brane wrapped on S3

+ × S1 × S2. The second

one however has vanishing tadpole charge in the absence of large gauge transformations,

given that

SD6
CS = 2π T6

∫

(C5 −B2 ∧ C3) ∧ F = −2π T6

∫

S3
+×S1×S2

F̂6

∫

dtAt

= −nN4

∫

dtAt . (4.15)

For the D4 wrapped on S3
+ × S1 we find

SD4
CS = −2π T4

∫

S3
+×S1

F̂4

∫

dtAt = −N4

∫

dtAt . (4.16)

As a result, there is one candidate for baryon vertex in the non-Abelian T-dual background,

realized as a D4-brane wrapped on S3
+ × S1.

Similarly, in the original background we had D3±-branes wrapped on S3
± t’Hooft

monopoles whose tadpole charges were given by the ranks of the flavor groups. The D3+ is

mapped after the duality into a D4 wrapped on {S3
+, ρ} and a D6 wrapped on {S3

+, ρ, S
2}

with tadpole charges

SD4
CS = −2π T4

∫

S3
+

∫ ρn+1

ρn

dρF̂4

∫

dtAt = Nf
4

∫

dtAt , (4.17)
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and

SD6
CS = −2πT6

∫

S3
+×S2

∫ ρn+1

ρn

dρF̂6

∫

dtAt = −Nf
2

∫

dtAt . (4.18)

Given that Nf
4 is not associated to a BPS D4-brane in the absence of large gauge trans-

formations it is sensible to also not associate to it a ’t Hooft monopole configuration. The

D6-brane thus remains as the candidate ’t Hooft monopole, with tadpole charge given by

the charge of the D2 flavor brane.

The D3− ’t Hooft monopole of the original background is in turn mapped into a D0-

brane and a D2-brane wrapped on the S2. We indeed find that these branes have tadpoles

with charges

SD0
CS = −2π T0m

∫

dtAt = −N8

∫

dtAt , (4.19)

and

SD2
CS = −2π T2

∫

S2

F̂2

∫

dtAt = −nN8

∫

dtAt . (4.20)

Clearly the second brane does not carry any tadpole charge in the absence of large gauge

transformations. Thus, only the D0-brane remains as candidate ’t Hooft monopole, with

tadpole charge given by the charge of the D8 flavor brane.

Consistently with our previous results we find two ’t Hooft monopole configurations

in the dual background whose tadpole charges are given by the charges of the two D2 and

D8 dual flavor branes.

4.6 Central charge

Finally in this section we compute the central charge of the dual supergravity solution. We

show that as in the original theory it is possible to define two R-symmetry currents from

which

c = 2
k+k−

k+ + k−
(4.21)

as in [65]. We take the general expressions in [70], to which the reader is referred for more

details.

Rewriting the original IIB metric as

ds2str = α(r)β(r)dr2 + α(r)dx21,1 + gijdy
idyj , (4.22)

we read off

α = L2r2, β =
1

r4
. (4.23)

Substituting these in the expressions for the internal volume12 and r-dependent quantity

κ we obtain

Vint =

∫

d7y e−2Φ
√

det(gij) = 4π4R3
+R

3
−δx (4.24)

κ = V 2
int α(r) = V 2

intLr.

12We have generalized these as in [54] to account for the y-dependent dilaton in the dual background.
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The central charge of the original theory can then be computed as

c ∼ βd/2κ3d/2(κ′)−d (4.25)

where d = 1 in our case and κ′ ≡ dκ/dr, to obtain

c =
1

(2π)2
LR3

+R
3
− δx = 2L2N1 = 2N1

N+
5 N−

5

N+
5 +N−

5

, (4.26)

where we have substituted δx from (3.6), L2 = N+
5 N−

5 /(N+
5 + N−

5 ), and have fixed the

normalization factor in (4.25) to agree with the central charge computed in [65], with

k± = N1N
±
5 .

Similarly for the non-Abelian T-dual solution we find

Ṽint =

∫

d7y e−2Φ
√

det(g̃ij) =
1

3
π6R3

+R
3
−δx , (4.27)

from where, taking the same normalization factor as in (4.26),

c̃ =
1

48
LR3

+R
3
− δx =

π

3
L2N4 = 2N4

Nf
2 N

f
8

3Nf
2 +Nf

8

. (4.28)

Note that it is not possible to bring the dual central charge into the form (4.21) unless we

change the normalization factor. Indeed, the change in the internal volume produced by the

non-Abelian T-duality transformation translates generically into central charges differing

by constant factors (see for instance [45, 49]). Still, up to this normalization factor, the

central charge is of the form (4.21), with two levels that depend differently on the products

of color and flavor charges. We denote these by k+ = 3N4N
f
2 , k

− = N4N
f
8 . Note that

consistently with the form of the dual geometry, the + ↔ − symmetry of the original

background has now disappeared. It would be interesting to understand the field theory

origin of the values for the two levels that we obtain. The central charge is thus compatible

with a large N = (0, 4) superconformal theory dual to our solution.

5 Example in new class of AdS3 × S2 geometries in 11D

In this section, following section 2, we manipulate the massive IIA solution of the previous

section by performing two Abelian T-dualities, in the process rendering it as a solution

to massless IIA supergravity. We will then be in a position to uplift the solution to

11D supergravity. As we detail in section 7, while not entirely obvious, there are indeed

two manifest global U(1) isometries, namely the overall transverse x-direction and the

remaining Hopf-fibre, which becomes a global symmetry after the initial T-duality.

Performing the T-duality on the x-direction, the NS sector is unchanged, while the

T-dual RR sector becomes

F1 =
R2

−

4
dx,

F3 =
4R2

− ρ3

16ρ2 +R4
−

sinχdχ ∧ dξ ∧ dx−
R3

−

4R+L
[L4Vol(AdS3) +R4

+Vol(S
3
+)],
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F5 = [2L2Vol(AdS3) + 2R2
+Vol(S

3
+)] ∧ ρ dρ ∧ dx

−
4R3

− ρ3

LR+(16ρ2 +R4
−)

[L4Vol(AdS3) +R4
+Vol(S

3
+)] sinχdχ ∧ dξ. (5.1)

We can further T-dualise on the Hopf-fibre direction, which we parametrise through the

coordinate ψ, to get the massless IIA solution:

dŝ2 = L2ds2(AdS3) +
R2

+

4
(dθ2 + sin2 θdφ2) + dx2 +

4

R2
+

dψ2

+
4

R2
−

dρ2 +
4R2

− ρ2

16ρ2 +R4
−

(dχ2 + sin2 χdξ2),

B̂ =
16ρ3

16ρ2 +R4
−

sinχdχ ∧ dξ + cos θdφ ∧ dψ,

e−2Φ̂ =
R2

−R2
+

256
(16ρ2 +R4

−),

F2 = −
R2

−

4
dx ∧ dψ −

R3
−R3

+

32L
sin θdθ ∧ dφ,

F4 = −
4R2

− ρ3

16ρ2 +R4
−

sinχdχ ∧ dξ ∧ dx ∧ dψ +
R3

−L
3

4R+
vol(AdS3) ∧ dψ,

+
ρR2

+

4
sin θdθ ∧ dφ ∧ dρ ∧ dx−

R3
−R3

+ ρ3

2L(16ρ2 +R4
−)

sin θdθ ∧ dφ ∧ sinχdχ ∧ dξ.

Uplifting to 11D, we get:

ds211 = e2λ
[

L2ds2(AdS3) + e2A(dχ2 + sin2 χdξ2) + ds26

]

,

G4 = −
4R2

− ρ3

16ρ2 +R4
−

sinχdχ ∧ dξ ∧ dx ∧ dψ +
R3

−L
3

4R+
vol(AdS3) ∧ dψ,

+
R2

+

4
sin θdθ ∧ dφ ∧ ρdρ ∧ dx−

R3
−R3

+ ρ3

2L(16ρ2 +R4
−)

sin θdθ ∧ dφ ∧ sinχdχ ∧ dξ

+

[

16ρ2(16ρ2 + 3R4
−)

(16ρ2 +R4
−)

2
dρ ∧ sinχdχ ∧ dξ − sin θdθ ∧ dφ ∧ dψ

]

∧Dz, (5.2)

where we have defined

e2λ = e−
2
3
Φ̂, e2A =

4R2
− ρ2

16ρ2 +R4
−

,

ds26 =
R2

+

4
(dθ2 + sin2 θdφ2) + dx2 +

4

R2
+

dψ2 +
4

R2
−

dρ2 +
256

R2
−R

2
+(16ρ

2 +R4
−)

Dz2,

Dz ≡ dz + C1,

C1 = −
R2

−

8
(xdψ − ψdx) +

R3
−R

3
+

32L
cos θdφ. (5.3)

One can check that the Bianchi identity and the equations of motion are satisfied. As we

argue in section 7, this uplifted geometry is expected to be 1
4 -BPS. What is particularly
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interesting about this uplift is that the internal manifold exhibits SU(2)-structure, yet

it is beyond the scope of the ansatz in [2], since A and G in (2.1) are clearly non-zero.

This opens up the possibility that we can read off the relation between the 6D Killing

spinors appearing in the more general classification [22], feed them into supersymmetry

conditions and identify a more general class of supersymmetric AdS3 × S2 solutions in

11D supergravity with SU(2)-structure manifolds. One can then use the supersymmetry

conditions to find further explicit solutions, some of which may be, in contrast to non-

Abelian T-duals, compact. We hope to report on this in future work [24].

6 A new IIB AdS3 × S2 × S2 solution

In this section we dualize once more the AdS3 × S3 × S2 solution of section 4 with respect

to the SU(2)+L acting on the S3
+. We show that this dualization produces a new AdS3

solution, this time in Type IIB. As we discuss in section 7, and further in appendix A,

the new solution we generate will be 1
4 -BPS and still preserve N = (0, 4) supersymmetry

in 2D.13

The new background is given by

ds2IIB = L2ds2(AdS3) + dx2 +
4

R2
+

(

dρ2+ +
R6

+ρ
2
+

64∆+

(

dχ2
+ + sin2 χ+dξ

2
+

)

)

+
4

R2
−

(

dρ2− +
R6

−ρ
2
−

64∆−

(

dχ2
− + sin2 χ−dξ

2
−

)

)

, (6.1)

where we have introduced (ρ−, χ−, ξ−) to equal our previous (ρ, χ, ξ) after the first du-

alization on S3
−, and (ρ+, χ+, ξ+) to denote the new coordinates arising after the second

dualization on S3
+. ∆± are given by

∆± =
R6

± + 16R2
±ρ

2
±

64
. (6.2)

The corresponding dilaton is just

e−2Φ = ∆+∆−, (6.3)

and the new NS-NS 2-form is given by

B2 =
R2

+ρ
3
+

4∆+
Vol(S2

+) +
R2

−ρ
3
−

4∆−
Vol(S2

−) (6.4)

where S2
± are the 2-spheres parameterized by (χ±, ξ±), respectively. The dual RR sector

is given by14

F̂1 =
R3

−R
3
+

32L
dx+

1

4
R2

−ρ+dρ+ −
1

4
R2

+ρ−dρ−,

F̂3 =
1

4
R2

+ρ
2
− dρ− ∧Vol(S2

−)−
1

4
R2

−ρ
2
+ dρ+ ∧Vol(S2

+),

13The only subtlety here would appear to be the correct identification of the global SU(2) with respect

to which one T-dualises.
14Note that these are the fluxes associated to the Page charges.
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F̂5 = 2L2ρ−ρ+Vol(AdS3) ∧ dρ− ∧ dρ+

−
L3

4
Vol(AdS3) ∧ dx ∧

(

R3
+

R−
ρ− dρ− +

R3
−

R+
ρ+ dρ+

)

,

F̂7 =
L3

4
Vol(AdS3) ∧ dx ∧

(

R3
+

R−
ρ2−dρ− ∧Vol(S2

−) +
R3

−

R+
ρ2+dρ+ ∧Vol(S2

+)

)

,

− 2L2ρ−ρ+Vol(AdS3) ∧ dρ− ∧ dρ+ ∧
(

ρ−Vol(S
2
−) + ρ+Vol(S

2
+)

)

,

F̂9 = 2L2ρ2−ρ
2
+Vol(AdS3) ∧ dρ− ∧Vol(S2

−) ∧ dρ+ ∧Vol(S2
+). (6.5)

This solution satisfies the IIB equations of motion and preserves eight supersymmetries.

As our previous massive AdS3 solution, it is perfectly regular, with the range of the new

R
+ direction, ρ+, also to be determined. As we did after the first dualization, we link

the running of both non-compact directions ρ± to large gauge transformations in this

background. The ranges of these coordinates must then be divided in [ρ±(n±), ρ±(n±+1)]

intervals in which large gauge transformations with n± parameters on the non-trivial S2
±

cycles ensure that B2 lies in the fundamental region.

The field theory analysis that can be made from this supergravity solution follows very

closely the one we made for the previous massive AdS3 solution, so we will omit the details.

As in that case each of the brane configurations that we described in section 2 is mapped

to a single brane configuration in the dual for n± = 0, and no dual configurations exist

otherwise unless R− = R+ = 0. For n± = 0 we find the brane configurations:

• Color branes: D7 on {t, x1, ρ−, S
2
−, ρ+, S

2
+}

• Flavor branes: D5 on {t, x1, r−, ρ+, S
2
+} (at ρ− = 0)

D5’ on {t, x1, r+, ρ−, S
2
−} (at ρ+ = 0)

This can be summarized pictorially as

✟
✟D5

D4

66♠♠♠♠♠♠♠♠

((◗
◗◗

◗◗
◗◗

◗◗

D7

✟
✟D7

D8

66♠♠♠♠♠♠♠♠

((◗
◗◗

◗◗
◗◗

◗

D5′

✟
✟D3

D2

66♠♠♠♠♠♠♠♠

((◗
◗◗

◗◗
◗◗

◗◗

D5

where we have crossed out the branes not occurring as BPS configurations but expected

a priori from the analysis of the fluxes. The charges of the surviving BPS D7, D5 and

D5’ are:

N7 = +
1

2κ210T7

∫

S1

F̂1 =
R3

+R
3
−

32L
δx (6.6)

N+
5 = −

1

2κ210T5

∫

S2
−

∫ ρ−(1)

0
dρ− F̂3 (6.7)

N−
5 = +

1

2κ210T5

∫

S2
+

∫ ρ+(1)

0
dρ+ F̂3 (6.8)
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where once again δx is the hand-set length of the x-direction. ρ±(1) satisfy 16ρ3
±(1)/(R

4
± +

16ρ2
±(1)) = π. Hence, a candidate brane intersection is:

N+
5 D5 : 013456

N−
5 D5′ : 012789

N7D7 : 01345789 (6.9)

which realizes the SU(2)+ × SU(2)− symmetries of the background. As shown in section

7 (see also the appendix) these correspond to R-symmetries in the dual theory. Thus, the

dual field theory is still a large N = (0, 4) SCFT. The field theory living at the intersection

would have gauge group U(N7) and a global symmetry SU(N+
5 )× SU(N−

5 ).

Consistently with this picture we also have:

• Baryon vertices: D1 on {t, S1} with tadpole charge N7

• ’t Hooft monopoles: D3± on {t, ρ±, S
2
±} with tadpole charge N∓

5

• Central charge:

c =
2

3
N7

N+
5 N−

5

N+
5 +N−

5

(6.10)

This form for the central charge agrees with a large N = (0, 4) dual CFT with affine

SU(2)± current algebras at levels k± = N7N
±
5 , even if with a different overall factor

compared to [65]. This is consistent with the supersymmetry analysis. Together with

the analysis of brane configurations this suggests a dual field theory in which D7 branes

substitute the D1-branes of the original field theory dual to the AdS3 × S3
+ × S3

− × S1

solution. In this theory the global SU(2)L+×SU(2)L− symmetries have disappeared. It would

be interesting to see if one can indeed derive these properties from the brane intersection

given by (6.9).

7 Comments on supersymmetry

In this section we comment on the number of supersymmetries the various solutions to 10D

Type II supergravity preserve. To make the text self-contained, we start by recalling our

supersymmetry conventions [66, 71]. The fermionic supersymmetry variations for Type

IIA and Type IIB supergravity are respectively

δλ =
1

2
/∂Φη −

1

24
/H3σ3η +

1

8
eΦ

[

5mσ1 +
3

2
/F 2iσ2 +

1

24
/F 4σ1

]

η,

δΨµ = ∇µη −
1

8
H3µνρΓ

νρσ3 +
1

8
eΦ

[

mσ1 +
1

2
/F 2iσ2 +

1

24
/F 4σ1

]

Γµη, (7.1)

and

δλ =
1

2
/∂Φη −

1

24
/H3σ3η +

1

2
eΦ

[

/F 1iσ2 +
1

12
/F 3σ1

]

η,

δΨµ = ∇µη −
1

8
H3µνρΓ

νρσ3 −
1

8
eΦ

[

/F 1iσ2 +
1

6
/F 3σ1 +

1

240
/F 5iσ2

]

Γµη, (7.2)
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where λ denotes the dilatinos, Ψµ the gravitinos and η is a Majorana-Weyl spinor

η =

(

ǫ+
ǫ−

)

. (7.3)

The supersymmetry preserved by the non-Abelian T-dual of AdS3 ×S3 ×CY2 is well-

documented [17, 66] and analysis leads to the conclusion that half the supersymmetry is

broken in the transformation. Therefore, for the geometries exhibited in section 2, all

solutions preserve eight supersymmetries, or N = (0, 4) supersymmetry in 2D. We have

noted that the 11D uplift fits into the classification of [2] and further demonstrated that

supersymmetry is not enhanced beyond 1
4 -BPS in 11D, thus providing the first concrete

example in the class of [2].

For the geometry AdS3 × S3 × S3 × S1, supersymmetry breaking is not a foregone

conclusion. To see why this may be the case, we recall that the geometry AdS3 × S3 ×

S3×S1 possesses an SU(2)×SU(2) R-symmetry, yet is manifestly SO(4)×SO(4)-invariant.

Therefore, it could be expected that a judicious choice of the T-duality SU(2) factor would

result in a geometry preserving the same amount of supersymmetry as the original solution.

This intuition is based on ref. [37], where T-duality with respect to a global SU(2) isometry

generated a surprising new supersymmetric AdS6 solution to IIB supergravity.

Here we correct statements in the literature15 and show that picking out a left or right-

acting SU(2) isometry from one of the three-spheres leads to broken supersymmetry in an

analogous fashion to AdS3 × S3 ×CY2 non-Abelian T-duals. For completeness, we do this

in two ways, uncovering a consistent picture.

Firstly, and most easily, we can import the findings of ref. [66]. We recall for spacetimes

with SO(4) isometry - with generalisations to SU(2) isometry [53] - that supersymmetry

breaking is encoded in a single condition, namely (3.11) of ref. [66],

[

−
1

2R−
Γχξσ3 −

1

4R−
Γχξρiσ2 −

1

4

(

1

L
Γ012 +

1

R+
Γ678

)

σ1

]

η̃ = 0, (7.4)

where, assuming we T-dualise from the IIB form for the geometry, η̃ is related by a factor

to the Killing spinor of IIA supergravity η,

η̃ ≡ e−Xη = exp

(

1

2
tan−1

(

R2
−

4ρ

)

Γχξσ3

)

η. (7.5)

Using (3.5), we can rewrite these conditions as:

[

−
1

R−
Γχξ +

1

L
Γ012ρ +

1

R+
Γ678ρ

]

ǫ̃+ = 0,

[

1

R−
Γρχξ −

1

L
Γ012 −

1

R+
Γ678

]

ǫ̃− = 0, (7.6)

15It was initially reported in ref. [53] that an application of non-Abelian T-duality to an SU(2) factor

in one of the SO(4) isometries resulted in a T-dual preserving sixteen supersymmetries. The analysis of

ref. [53] failed to take account of an additional condition, which breaks supersymmetry to eight.
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and further using (3.14) of ref. [66], which in this case reads,

ǫ̃+ = Γρǫ+, ǫ̃− = −ǫ−, Γρχξ = −Γ345, (7.7)

we recover what turns out to be the original projection condition of the IIB geometry (3.1)

[

1

L
Γ012 +

1

R+
Γ345 +

1

R−
Γ678

]

η = 0. (7.8)

We observe that squaring this expression, we recover (3.5). We note also that in the process

of redefining the spinors, the chirality of ǫ̃+ is flipped so that it now corresponds to a Killing

spinor of Type IIB supergravity. On its own, this projection condition would suggest the

background is 1
2 -BPS, however we also find that the following identification is also implied

ǫ+ = ǫ−. (7.9)

This constitutes an additional condition, which breaks supersymmetry to 1
4 -BPS, or eight

supersymmetries.

To develop a better understanding of what has just happened, it is also useful to

explicitly work out the Killing spinors for the original solution (3.1). Following a calculation

similar to ref. [61], except translated into our conventions, and making use of the projection

condition (7.8), which falls out from the analysis, we can determine the precise form of the

Killing spinors in their original IIB setting:

ǫ+ =
[

r
1
2 + r−

1
2 (tΓ 2

0 + xΓ 2
1 )

]

(α1 +Ωβ1) + r−
1
2 (Ωα2 + β2),

ǫ− =
[

r
1
2 + r−

1
2 (tΓ 2

0 + xΓ 2
1 )

]

(α1 − Ωβ1)− r−
1
2 (Ωα2 − β2), (7.10)

where we have defined the constant spinors, Γ01αi = αi, Γ
01βi = −βi, and the matrix,

Ω = e−
1
2
ψ1Γ34

e−
1
2
θ1Γ53

e−
1
2
φ1Γ34

e−
1
2
ψ2Γ67

e−
1
2
θ2Γ86

e−
1
2
φ2Γ67

, (7.11)

where the angular dependence follows for the explicit form of left-invariant one-forms τα,

which satisfy dτα = 1
2ǫαβγτ

β ∧ τγ . The existence of Poincaré supersymmetries of both

chirality with respect to Γ01 indicates that supersymmetry is N = (4, 4) in 2D.

We now can appreciate that the identification (7.9) is a by-product of the fact that all

Killing spinors with angular dependence get projected out under the non-Abelian T-duality.

It is worth noting that a single Hopf-fibre T-duality also results in the same supersymmetry

breaking, although one can consider a linear combination of the Hopf-fibres, which preserves

additional supersymmetries [72].16

This final observation that angular dependence gets projected out presents us with a

small puzzle. Namely, how can the loss of angular dependence be reconciled withN = (0, 4)

supersymmetry, which requires, at a very least, the geometric realisation of an associated

16That the T-dual geometry in this special case must preserve twelve supersymmetries, and not the

generic eight, can be most easily seen by resorting to the Kosmann spinorial-Lie-derivative [73]. One can

then use the powerful result in ref. [53] that the supersymmetries uncharged under the T-duality direction

are preserved.
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SU(2) R-symmetry? To answer this question, we need to recall that an SU(2) transfor-

mation on a round three-sphere results in a residual S2 factor in the metric. This then is

one candidate SU(2) R-symmetry. As we shall appreciate later, the Killing spinors of the

non-Abelian T-dual also have dependence on SU(2)R of the remaining three-sphere. This

suggests the presence of large N = (0, 4) supersymmetry where the corresponding isometry

group is D(2, 1|γ) × SL(2,R) × SU(2), which as we explain in the appendix, is analogous

to the Abelian T-dual, i.e. the geometry AdS3 × S3 × S2 × T 2.

In a bid to make this work self-contained, we now explicitly check that the residual S2

becomes the SU(2) R-symmetry, that the remaining SO(4) has an SU(2)L global symmetry

and that supersymmetry is indeed N = (0, 4), as claimed. To do so, we solve the Killing

spinor equations for IIA supergravity in the T-dual geometry.

We begin by introducing a frame for the remaining three-sphere,

ds2(S3
+) =

1

4
[(dψ + cos θdφ)2 + dθ2 + sin2 θdφ2]. (7.12)

We next introduce the natural dreibein, e6 = R+

2 (dψ+cos θdφ), e7 = R+

2 dθ, e8 = R+

2 sin θdφ

and reverse the overall sign of the RR sector relative to (4.5), so we can import results

from ref. [66], where expressions are given in terms of spherical coordinates, which are best

suited to the current example. We note that H3 = dB2 has no legs along the ψ-direction,

so the gravitino variation in this direction simply reads:

e−XδΨ6 =
2

R+
∂ψη̃ +

1

2R+
Γ78η̃ +

e−2X

R−

√

16ρ2 +R4
−

[

−
R2

−

4
σ1 − ρΓχξiσ2

−ρ

(

R−

L
Γ012ρ +

R−

R+
Γ678ρ

)

σ1 −
R3

−

4

(

1

R+
Γ0129 +

1

L
Γ6789

)

σ1

]

Γ6η̃, (7.13)

where we have multiplied by the matrix e−X and redefined the original Killing spinor as

in (7.5). The Killing spinor η̃ is a IIA spinor satisfying the projection conditions

(

R−

L
Γ012χξiσ2 +

R−

R+
Γ678χξiσ2

)

η̃ = η̃,

Γρσ1η̃ = −η̃, (7.14)

hopefully making it obvious, through the appearance of two projection conditions, that the

number of preserved supersymmetries is eight.

Bearing in mind that η̃ is comprised of Majorana-Weyl spinors of opposite chirality,

we can dualise gamma matrices as follows

Γ012xσ1η̃ = Γ678ρχξiσ2η̃, Γ678xσ1η̃ = Γ012ρχξiσ2η̃. (7.15)

Then using the above expressions, one can rewrite (7.13) as

e−XδΨ6 =
2

R+
∂ψη̃ +

1

2R+
Γ78η̃ +

e−2X

R+

√

16ρ2 +R4
−

Γ78

[

−2ρ+
R2

−

2
Γχξσ3

]

η̃. (7.16)
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Finally, we insert the expression for e−2X ,

e−2X =
1

√

16ρ2 +R4
−

(4ρ+R2
−Γ

χξσ3), (7.17)

to reach the conclusion that ∂ψη = ∂ψ(e
X η̃) = 0, so after an SU(2) transformation the

Killing spinors are independent of the Hopf-fibre, meaning that we can Abelian T-dualise

later with respect to this direction. Similar calculations for the θ and φ-directions show

that the Killing spinors also do not depend on these. We therefore see in an explicit fashion

that the second three-sphere is now comprised of a global SU(2)L symmetry, yet with the

Killing spinors still dependent on SU(2)R. In analogy with the Abelian case, we have an

D(2|1, γ)× SL(2,R)× SU(2) symmetry algebra.

To extract the R-symmetry dependence on the residual S2, we consider e−XδΨα, where

α ∈ {χ, ξ}. We find

e−XδΨχ =

√

16ρ2 +R4
−

2R−ρ
∂χη̃ +

e−2X

(16ρ2 +R4
−)

(

−
R5

−

4ρ
Γχσ1 +

(16ρ2 + 3R4
−)

2R−
Γξiσ2

)

η̃

+
1

R−

√

16ρ2 +R4
−

(

−
R2

−

2
Γχσ1 + 2ρΓξiσ2

)

η̃,

=

√

16ρ2 +R4
−

2R−ρ

(

∂χη̃ +
1

2
Γξiσ2

)

η̃, (7.18)

where in the second line we have expanded e−2X . A similar calculation for e−XδΨξ, after

simplifications leads to

e−XδΨξ =

√

16ρ2 +R4
−

2R−ρ

(

1

sinχ
∂ξη̃ +

1

2

cosχ

sinχ
Γξχ −

1

2
Γχiσ2

)

η̃. (7.19)

Up to the inclusion of the Killing spinors for AdS3, we can then write the explicit form for

the IIA Killing spinor

η = eXe−
1
2
χΓξiσ2e−

1
2
ξΓχξ η̃AdS3 (7.20)

where η̃AdS3 denotes the Killing spinors for AdS3,

∇µη̃ =
1

2
γ3Γµη̃, (7.21)

where we have defined γ3 ≡ Γ012. A calculation similar to appendix A, then shows that

supersymmetry is indeed N = (0, 4). Similar calculations to above show that the dilatino

variation vanishes. Again these results are all expected and follow from the analysis pre-

sented in [66], and more generally [53].

To go from the massive IIA solution of section 4 to the massless solution in section 5,

we perform two T-dualities with respect to both the overall transverse direction x and the

Hopf-fibre of the remaining three-sphere. As we have argued, both correspond to global

U(1) isometries and it is expected that supersymmetry will be preserved. As one further
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final check that this is indeed the case, we record some of the gravitino variations after

these two Abelian T-dualities. The gravitino variations in the x-direction and ψ-direction,

notably those featuring in the T-duality, are respectively

e−XδΨx =
1

4L
Γθφχξ

[

−
L

R−
Γθφxψ +

L

R+
Γρχξx − 1

]

σ1η̃, (7.22)

and

e−XδΨψ =
1

2R+
Γθφσ3

[

Γρxψiσ2 + 1
]

η̃ +
1

4L
Γψθφχξ

[

−
L

R−
Γθφxψ +

L

R+
Γρχξx − 1

]

σ1η̃,

(7.23)

leading to good, commuting projection conditions. Furthermore, up to a redefinition in

ǫ̃+, namely ǫ̃+ → −Γxψ ǫ̃+, with ǫ− unchanged so it maintains its chirality, these projection

conditions can be mapped back to (7.14), so we see that they are consistent. Yet again, by

analogy with the Abelian T-duals discussed in the appendix, the isometry group for this

geometry is expected to be D(2|1, γ)× SL(2,R).

8 Conclusions

Non-Abelian T-duality is a symmetry of the equations of motion of type II supergrav-

ity. This has been shown explicitly for SO(4)-invariant spacetimes via dimensional reduc-

tion [66], results of which featured prominently in this current work. For spacetimes with

less symmetry, e. g. the class of Bianchi IX spacetimes with SU(2) isometry, partial results

exist [53, 74], but given the number of examples explored to date, it is safe to assume that

the non-Abelian T-duality procedure with RR fluxes outlined in [17], and generalised to

larger non-Abelian groups in [75], will take Type II supergravity solutions into each other.

We have made use of this solution-generating property in this paper to provide sample

geometries for a class of 1
4 -BPS AdS3 × S2 spacetimes in 11D supergravity, where the

internal space is an SU(2)-structure manifold. Despite a number of studies asserting that

the class exists [1, 18, 22], most notably the classification in [2], there was no explicit

example known. Not only have we demonstrated that the non-Abelian T-dual of the well-

known geometry AdS3 × S3 × CY2 provides an example in this class, we have exhibited

non-Abelian T-duals of a related geometry, AdS3×S3×S3×S1, which fall outside this class.

This suggests that the general supersymmetry conditions of ref. [22] can be mined further

to extract a larger class of supersymmetric solutions based on SU(2)-structure manifolds,

thus extending the [2] class. It may be hoped that the non-Abelian T-duals, despite being

manifestly non-compact, may serve to identify compact solutions via ansatz when the full

class of supersymmetric AdS3 × S2 solutions of 11D supergravity are identified.

On a related note, the 1
4 -BPS AdS3 solutions we generate involve a Romans’ mass.

Therefore, they will serve as a test of an ongoing program of work classifying the AdS

solutions of massive IIA supergravity [38, 76, 77]. Furthermore, it may be interesting to

consider non-Abelian T-duals of general AdS3 × S3 × S3 ×Σ2 solutions to 11D supergrav-

ity [78], where Σ2 is a Riemann surface.

We have discussed some properties of the field theories associated to the AdS3×S3×S2

and AdS3×S2×S2 backgrounds that we construct with an aim at testing the general ideas
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on the CFT interpretation of non-Abelian T-duals in [54] (see also [45]). We have seen that

as in previous examples there seems to be a doubling of charges after the transformation.

In our AdS3 cases however the branes responsible for the extra charges turn out to be

supersymmetric only in the absence of large gauge transformations, in which case the

extra charges vanish. The absence of large gauge transformations can be explained in turn

either by the non-existence of non-trivial 2-cycles in the dual geometry at finite ρ, or, else,

by a geometry terminating at a regular point. As in [45] the termination of the geometry at

a regular point is intimately related to the depletion of the rank of one of the gauge groups.

An important piece of information about the CFT duals to the new solutions comes

from the analysis of their central charges. We have shown that as in the original theory it

is possible to define two R-symmetry currents from which the central charges exhibit the

expected c ∼ k+k−/(k+ + k−) behaviour for a large N = (0, 4) superconformal algebra, in

full agreement with the supersymmetry properties of the solutions.
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n. 307286 (XD-STRING). E. Ó C is grateful to KIAS for hospitality during the final
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T-DUALITIES.

A Hopf-fibre T-duality for AdS3 × S3 × S3 × S1

To support claims in the text concerning the isometry supergroup for non-Abelian T-

duals, here we present simpler Hopf-fibre T-duals in an analogous fashion. Abelian Hopf-

fibre T-duals of the related IIB geometry with small superconformal symmetry, namely

AdS3 × S3 × CY2, were considered in [79]. There it was noted that supersymmetry can

be preserved completely. Here we explicitly show that this is not the case when one starts

with a geometry with large superconformal symmetry. Moreover, following [79], we could

extend our analysis here to geometries supported by both NS and RR fields, where T-

duality results not in S1 × S2, but in (squashed) Lens spaces, S3/Zp, however we focus on

the simplest case with just RR fields.

Starting from AdS3×S3×S3×S1 (3.1), it is known that Abelian T-duality on a given

Hopf-fibre will produce a 1
4 -BPS AdS3 × S3 × S2 × T 2 geometry, where the corresponding

supergroup is D(2|1, γ) × SL(2,R) × SU(2) [60, 61]. Here γ is a real parameter equating
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to the ratio of the radii of the three-sphere and two-sphere.17 Recalling that the bosonic

subgroup of the supergroup D(2|1, γ) is SL(2,R) × SU(2) × SU(2), we recognise that the

symmetries simply correspond to the isometries of AdS3 × S3 × S2.

Assuming we begin in Type IIB with the solution (3.1), the geometry resulting from

a Hopf-fibre T-duality may be written as

ds2 = L2ds2AdS3
+

4

R2
+

dψ2 +
R2

+

4
(dθ2 + sin2 θdφ2) +R2

−ds
2
S3
−

+ dx2,

B2 = cos θdφ ∧ dψ, eΦ =
2

R+
,

F2 = −
R2

+

4
sin θdθ ∧ dφ,

F4 =
[

2L2Vol(AdS3) + 2R2
−Vol(S

3
−)

]

∧ dψ. (A.1)

As with the original geometry, the Bianchis and the equations of motion are trivially

satisfied. Plugging this solution into the dilatino variation, one can extract two commuting

projection conditions,

(

−
1

R+
Γθφiσ2 +

1

L
Γ012ψσ1 +

1

R−
Γ678ψσ1

)

η = (Γψσ1 − 1)η = 0, (A.2)

confirming that we now have eight preserved supersymmetries versus the original sixteen.

As a consistency check, we observe that squaring the first projection condition, we recover

the constraint on the radii (3.5). Solving for the Killing spinor along the internal directions,

we find

η = e−
1
2
θΓφiσ2e

1
2
φΓθφ η̃, (A.3)

where η̃ denotes the Killing spinor for AdS3. Employing the left-invariant one-forms for

the inert three-sphere, we see that angular dependence drops out, so we have an SU(2)L
global symmetry, just as we witnessed in the non-Abelian case. As a direct consequence,

the Killing spinors are independent of the Hopf-fibre and we can perform a further Abelian

T-duality. It is an interesting feature of this geometry that uplifting on the M-theory circle

to 11D, we recover the AdS3 × S3 × S3 × T 2 geometry in 11D, so that supersymmetry is

restored to 1
2 -BPS.

18 This uplift should be contrasted with the more trivial T-duality on

the x-direction and uplift, which leads to the same upstairs solution.

It is instructive to perform another Hopf-fibre T-duality, thus mirroring the combina-

tion of non-Abelian transformations in section 6. Doing so with respect to the ψ2-direction,

we get

ds2 = L2ds2AdS3
+

4

R2
+

dψ2
1 +

R2
+

4
(dθ21 + sin2 θ1dφ

2
1) +

4

R2
−

dψ2
2

+
R2

−

4
(dθ22 + sin2 θ2dφ

2
2) + dx2,

17Prior to T-duality, this is just the ratio of the radii of the three-spheres.
18This is the reverse of the dimensional reduction considered in ref. [61].
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B2 = cos θ1dφ1 ∧ dψ1 + cos θ2dφ2 ∧ dψ2, eΦ =
4

R+R−
,

F3 =
R2

+

4
sin θ1dθ1 ∧ dφ1 ∧ dψ2 −

R2
−

4
sin θ2dθ2 ∧ dφ2 ∧ dψ1,

F5 = (1 + ∗10)
[

−2L2Vol(AdS3) ∧ dψ1 ∧ dψ2

]

, (A.4)

where we have added subscripts to distinguish the angular coordinates. We note that the

NS sector is even under an exchange of angular coordinates, whereas the RR sector is

odd. We now check the remaining supersymmetry. From the dilatino variation, we get the

projection condition:

Γψ1ψ2iσ2η = −η. (A.5)

From the gravitino variations along the x, ψ1 and ψ2 directions, we get the

additional projection
[

L

R+
Γ012θ1φ1ψ2 −

L

R−
Γ012θ2φ2ψ1

]

σ1η = −η. (A.6)

One can check that the two projection conditions we have indeed commute, so supersym-

metry is not broken further.

We can once again solve for angular dependence, getting

η = e−
1
2
θ1Γφ1ψ1σ3e−

1
2
φ1Γφ1θ1e−

1
2
θ2Γφ2ψ2σ3e−

1
2
φ2Γφ2θ2 η̃, (A.7)

where η̃ is expected to be the Killing spinor for AdS3. Indeed, one can check that the

remaining equation is just the Killing spinor equation for AdS3, ∇µη = 1
2γ3Γµη, where we

have defined γ3 ≡ Γ012. Solving the AdS3 Killing spinor equation, we find

η̃ =
(

r
1
2 + r−

1
2 (tΓ 2

0 + x1Γ
2
1 )

)

η̃+ + r−
1
2 η̃−, (A.8)

where η̃± are constant spinors subject to (A.5) and (A.6) satisfying Γ01η̃± = ±η̃±. We

clearly see that the preserved supersymmetry is N = (0, 4), since the Killing spinors sepa-

rate into the usual Poincaré and superconformal Killing spinors, each with a different chiral-

ity. The same conclusion can be drawn for the non-Abelian T-dual in section 6. However,

in contrast to the usual small superconformal symmetry, we appear to have SU(2)×SU(2)

R-symmetry, which is suggested from the angular dependence of the Killing spinors.

To further check the R-symmetry, we can also analyse the isometry algebra in our

conventions in 10D, following a procedure outlined in ref. [61]. The first step is to identify

the corresponding generic 10D Killing vector field, whose existence is always guaranteed

for supersymmetric geometries. Using the Killing spinor equations presented in section 7,

standard arguments show that

V =
1

2

(

ǭ+Γ
M ǫ+ + ǭ−Γ

M ǫ−
)

∂M (A.9)

is always Killing. Note, we define ǭ ≡ ǫ†Γ0, with (Γ0)† = −Γ0 and (Γi)† = Γi, i = 1, . . . , 9.

From (A.5), we have ǫ− = Γψ1ψ2ǫ+, and as a result,

VM =
1

2

(

ǭ+Γ
M ǫ+ − ǭ+Γ

ψ1ψ2ΓMΓψ1ψ2ǫ+

)

. (A.10)
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We immediately recognise that V ψi = 0, which is as expected, since these components of the

vector field drop out when we reduce on a Hopf-fibre from 11D [61]. Thus, VM = ǭ+Γ
M ǫ+,

only depends on one of the Majorana-Weyl spinors.

It is then a simple exercise to determine the internal components of V ,

Vint =
2

R+
ǭ+Γ

θ1ǫ− ξ+1 +
2

R+
ǭ+Γ

φ1ǫ−ξ
+
2 +

2

R−
ǭ+Γ

θ2ǫ−ξ
−
1 +

2

R−
ǭ+Γ

φ2ǫ−ξ
−
2

−
2

R+
ǭ+Γ

ψ1ǫ−ξ
+
3 −

2

R−
ǭ+Γ

ψ2ǫ−ξ
−
3 + (+ ←→ −), (A.11)

where we have relabeled ǫ̃ simply ǫ for convenience and have defined the following two-

sphere Killing vectors:

ξ+1 = cosφ1∂θ1 − sinφ1 cot θ1∂φ1 , ξ+2 = sinφ1∂θ1 + cosφ1 cot θ1∂φ1 , ξ+3 = ∂φ1 ,

with ξ−i similarly defined in terms of the coordinates (θ2, φ2). Note the Killing vectors

satisfy the expected SU(2) commutation relations, [ξ
(+)
i , ξ

(+)
j ] = −ǫijkξ

(+)
k , etc.

The subscripts on ǫ refer to chirality with respect to Γ01. It is straightforward to show

that other combinations of spinors cannot contribute to these vector bilinears. We note

that since we have eight supersymmetries, there is a priori no relation between say ǭ+Γ
θ1ǫ−

and ǭ+Γ
θ2ǫ− etc., so the SU(2) symmetries should be viewed as being independent. This

suggests an N = (0, 4) SCFT with SU(2)× SU(2) R-symmetry.

Evaluating the external AdS3 components of the Killing vector V , we find

Vext = (ǭ+Γ
2ǫ− + ǭ−Γ

2ǫ+) (M01 +D) + ǭ−Γ
0ǫ−(P0 − P1) + ǭ+Γ

0ǫ+(K0 +K1),

where now ǫ denotes the constant chiral spinors appearing in the expression for the AdS3

Killing spinor (A.8), and we have defined the AdS3 Killing vectors in Poincaré patch as

P0 = ∂t, P1 = −∂x,

M01 = x ∂t + t ∂x, D = r ∂r + t ∂t + x ∂x,

K0 = (t2 + x2 + r2)∂t + 2t(r∂r + x∂x),

K1 = (t2 + x2 − r2)∂x + 2x(r∂r + t∂t). (A.12)

These satisfy the usual conformal algebra:

[Mµν , Pρ] = −(ηµρPν − ηνρPµ), [Mµν ,Kρ] = −(ηµρKν − ηνρKµ),

[Mµν , D] = 0, [D,Pµ] = −Pµ, [D,Kµ] = Kµ,

[Pµ,Kν ] = 2Mµν − 2ηµνD, (A.13)

with µ, ν = 0, 1.

Recalling the bosonic subgroup of D(2|1, γ), we come to the conclusion that after two

Hopf-fibre T-dualities, the isometry supergroup of the AdS3 × S3 × S3 geometry, namely

D(2|1, γ) × D(2|1, γ) becomes simply D(2|1, γ) × SL(2,R), where γ is the ratio of the

two-sphere radii.
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[49] G. Itsios, C. Núñez, K. Sfetsos and D.C. Thompson, Non-Abelian T-duality and the

AdS/CFT correspondence:new N = 1 backgrounds, Nucl. Phys. B 873 (2013) 1

[arXiv:1301.6755] [INSPIRE].

[50] I. Bah, C. Beem, N. Bobev and B. Wecht, AdS/CFT dual pairs from M5-branes on Riemann

surfaces, Phys. Rev. D 85 (2012) 121901 [arXiv:1112.5487] [INSPIRE].

[51] I. Bah, C. Beem, N. Bobev and B. Wecht, Four-dimensional SCFTs from M5-branes,

JHEP 06 (2012) 005 [arXiv:1203.0303] [INSPIRE].

[52] F. Benini, Y. Tachikawa and B. Wecht, Sicilian gauge theories and N = 1 dualities,

JHEP 01 (2010) 088 [arXiv:0909.1327] [INSPIRE].

[53] O. Kelekci, Y. Lozano, N.T. Macpherson and E. Ó Colgáin, Supersymmetry and non-Abelian
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1 Introduction

In recent years non-Abelian T duality (NAT duality) has been very successfully applied

as a generator of new supergravity backgrounds that may have interesting applications in

the context of the AdS/CFT correspondence [1]–[17]. While some of these backgrounds

represent explicit new solutions to existing classifications [1, 4, 5, 12], some of them have

been shown to fall outside known classifications [18] or to provide the only explicit solution

to some set of PDEs [3].

A very inspiring example is the AdS6 solution to Type IIB supergravity constructed

in [3]. Supersymmetry is known to impose strong constraints on AdS6 backgrounds [19,
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20],1 even if large classes of fixed point theories are known to exist in 5 dimensions [22–24]

with expected AdS6 duals. The only AdS6/CFT5 explicit example identified to date is the

duality between the Brandhuber and Oz solution to massive Type IIA [25] (known to be

the only possible IIA AdS6 background [19]2) and the fixed point theory that arises from

the D4/D8/O8 system in [22]. Yet, there are families of 5 and 7-brane webs giving rise

to 5d fixed point theories [27–29] whose dual AdS6 spaces remain to be identified. The

solution in [3]3 provides a possible holographic dual to these theories.

The duality between 3d SCFTs arising from M5-branes wrapped on 3d manifolds and

AdS4 spaces is yet another example in which explicit AdS4 solutions with the required

properties are scarce. Remarkable progress has been achieved recently [30] through the

construction of explicit AdS4×Σ3×M4 solutions to massive IIA which are candidate duals

to compactifications of the (1, 0) 6d CFTs living in NS5-D6-D8 systems [31] on a 3-manifold

Σ3, which could eventually lead to a generalization of the 3d-3d correspondence [32–38]

to N = 1. The N = 2 case is yet especially interesting, since with this number of su-

persymmetries the 3d-3d correspondence allows to associate a 3d N = 2 SCFT to the 3d

manifold on which the M5-branes are wrapped [32–38]. This field theory arises as a twisted

compactification on the 3d Riemann surface of the (2, 0) CFT6 living in the M5-branes.

However, to date only one N = 2 AdS4 explicit solution to M-theory is known that

could provide the holographic dual to these compactifications. This solution is the uplift

to eleven dimensions [40, 41] of the Pernici-Sezgin solution [42] to 7d gauged supergravity,

that dates back to the 80’s. This is of the form AdS4 ×M7 where M7 is an S4-fibration

over a hyperbolic manifold H3, on which the M5-branes are wrapped. The Pernici-Sezgin

solution is the only explicit solution of the form AdS4 × Σ3 × S4 in the general class of

N = 2 AdS4 backgrounds obtained from M5-branes wrapping calibrated cycles in [43].

In this paper we construct a new N = 2 AdS4 solution to M-theory belonging to the

general class of N = 2 AdS4 backgrounds derived in [43]. This class is defined by requiring

that the Killing spinors satisfy the same projection conditions as the wrapped branes and

that there is no electric flux. Yet the solutions need not describe in general M5-branes

wrapped in 3d manifolds in the near horizon limit. Our solution seems to belong to this

more general class.

We obtain our solution through non-Abelian T-duality on the AdS4×CP 3 background

dual to ABJM [44], followed by an Abelian T-duality and an uplift to eleven dimensions.

The non-Abelian T-duality transformation is responsible for the breaking of the supersym-

metries from N = 6 to N = 2. The detailed properties of the resulting N = 2 AdS4

solution to Type IIB were studied in [11]. This solution contains two U(1)′s, one of which

can be further used to (Abelian) T-dualize back to Type IIA without breaking any of the

supersymmetries. Finally, the solution is uplifted to eleven dimensions, where it can be

shown to fulfill the conditions for 11d N = 2 AdS4 solutions with purely magnetic flux,

derived in [43].4

1See also [21].
2Variations of it such as orbifold solutions have also been constructed in [26].
3See [8] for a discussion of the properties of the associated CFT.
4A systematic study of the most general class of N = 2 AdS4 solutions of 11d supergravity, that includes

the results in [43], was carried out in [45].
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The paper is organized as follows. In section 2 we recall briefly the IIB solution con-

structed in [11] through non-Abelian T-duality acting on the AdS4×CP 3 IIA background.

In section 3 we construct its IIA Abelian T-dual, and discuss some properties of the as-

sociated dual CFT of relevance for the CFT interpretation of the 11d solution. Section 4

contains the uplift to M-theory. Here we discuss some properties of the CFT associated to

the 11d solution, that are implied by the analysis of the supergravity solution as well as its

IIA description. We compute the holographic central charge and show that, as expected,

it coincides with the central charge of the IIB solution written in terms of the 11d charges.

Thus, it scales with N3/2, contrary to the expectation for M5-branes. We argue that the

field theory analysis that we perform suggests that there should be Kaluza-Klein monopoles

sourcing the background, and that M5-branes should only play a role in the presence of

large gauge transformations (in a precise way that we define). This is intimately related

to the existence of a non-compact direction inherited by the NAT duality transformation,

which, as discussed at length in the NAT duality literature (see for instance [8, 11, 17]),

represents the most puzzling obstacle towards a precise CFT interpretation of this trans-

formation. Finally, in appendix A we present our conclusions. Here we discuss further our

result for the free energy, as well as the view that we have taken to try to give a CFT

meaning to the non-compact direction. We have relegated most of the technical details

to three appendices. In appendix A we include some details of the derivation of both the

NAT and T dual solutions presented in sections 2 and 3. These details are especially rele-

vant for the supersymmetry analysis. In appendix B we review the G-structure conditions

for preservation of supersymmetry of AdS4 ×M6 solutions to Type II supergravities. In

appendix C we perform the detailed supersymmetry analysis of the solutions in IIA, IIB

and M-theory.

2 The IIB NAT dual AdS4 solution

This solution was constructed in [11], where some properties of the associated dual CFT

were also analyzed. We refer the reader to this paper for more details. In this section we

present the background for completeness. More technical properties of the derivation that

will be useful for the study of the backgrounds constructed from this one in the following

sections are presented in appendix A.

The background arises as the NAT dual of the AdS4 × CP3 background with respect

to a freely acting SU(2) in the parameterization of the CP3 as a foliation in T 1,1 = S2×S3:

ds2(CP3)=dζ2 +
1

4

(
cos2 ζ(dθ2

1 + sin2 θ1dφ
2
1) + sin2 ζ(dθ2

2 + sin2 θ2dφ
2
2)

+ sin2 ζ cos2 ζ(dψ + cos θ1dφ1 + cos θ2dφ2)2
)

=dζ2+
1

4

(
cos2ζ(dθ2

1 +sin2θ1dφ
2
1)+sin2ζ(ω2

1 + ω2
2)+sin2ζ cos2ζ(ω3+cos θ1dφ1)2

)
(2.1)

where 0 ≤ ζ < π
2 , 0 ≤ θi < π, 0 ≤ φi ≤ 2π, 0 ≤ ψ ≤ 4π.
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Dualising with respect to the SU(2) acting on the 3-sphere parameterized by (ψ, θ2, φ2)

we obtain

ds̃2 =
L2

4
ds2(AdS4) + L2

(
dζ2 +

1

4
cos2 ζ (dθ2

1 + sin2 θ1dφ
2
1)
)

+ ds2(M3) , (2.2)

where ds2(M3) stands for the 3-dimensional metric:

ds2(M3) =
1

16 detM

[
L4 sin4 ζ

(
dr2 + r2dχ2 − sin2 ζ (sinχdr + r cosχdχ)2 +

+r2 cos2 ζ sin2 χ (dξ + cos θ1dφ1)2
)

+ 16r2dr2
]
. (2.3)

detM is given by:

detM =
L2

64
sin2 ζ

(
16r2(sin2 χ+ cos2 χ cos2 ζ) + L4 sin4 ζ cos2 ζ

)
. (2.4)

Here (χ, ξ) parameterize the new 2-sphere arising through the NAT duality transformation,

that we will denote by S̃2. r is the non-compact coordinate generated by the transforma-

tion, which lives in R+. The presence of this non-compact direction is intimately related to

the long-standing open problem of extending NAT duality beyond spherical world sheets.

In the context of AdS/CFT applications this poses a problem to the CFT interpretation

of AdS backgrounds generated through this transformation. Some ideas to provide a con-

sistent interpretation have been proposed in [8, 11] (see also [17]), which we will partially

use in this paper. The reader is referred to these papers for more details.

The dilaton reads in turn

eφ =
L

k

1√
detM

. (2.5)

A B2 field is also generated that reads:

B2 =
L2 sin2 ζ

64 detM

[
−L4r cos2 ζ sin4 ζ cos θ1 sinχdφ1 ∧ dχ

−16 r2
(
r(cos2 ζ cos2 χ+ sin2 χ) Vol(S̃2) + sin2 ζ sin2 χ cosχdξ ∧ dr

)
− cos2 ζ cos θ1 cosχ (L4 sin4 ζ + 16r2) dr ∧ dφ1

]
. (2.6)

Together with this we find the RR sector:

F1 =
k

2

(
r sin2 ζ sinχdχ− sin2 ζ cosχdr − r sin 2ζ cosχdζ

)
(2.7)

F̂3 = − 3

128
kL4 sin3 2ζ dζ ∧Vol(S2

1) +
k

2

(
r dr ∧ (cos2 ζ Vol(S2

1) (2.8)

+ sin 2ζ cos θ1 dζ ∧ dφ1 + sin 2ζ sin2 χdζ ∧ dξ)− r2 sin 2ζ cosχdζ ∧Vol(S̃2)
)

F̂5 =
1

64
kL6 sin3 ζ cos ζ Vol(AdS4) ∧ dζ − 3

8
kL2rVol(AdS4) ∧ dr

+
k

2
r2
(

cos2 ζ Vol(S2
1) + sin 2ζ cos θ1 dζ ∧ dφ1

)
∧ dr ∧Vol(S̃2) , (2.9)

where Fp = dCp−1 −H3 ∧ Cp−3 and F̂ = F ∧ e−B2 are the fluxes associated to the Page

charges.
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Note that after the dualisation a singularity has appeared at the fixed point ζ = 0,

where the squashed S3 used to dualise shrinks to zero size. This singularity is associated

to the component of the metric on the r-direction, and is always compensated with the

singularity in the dilaton in computations of physical quantities such as gauge couplings,

internal volumes, etc. We will see that it will be inherited by the IIA and M-theory solutions

where physical quantities will however be perfectly well defined as well.

3 The IIA NAT-T dual AdS4 solution

Following the steps in appendix A we get the following solution in Type IIA after dualizing

the previous background along the φ1 direction, that we will simply rename as φ 5

ds2 =
L2

4
ds2(AdS4) + L2dζ2 +

L2

4
cos2 ζdθ2 +

4∑
i=1

(
Gi
)2
, (3.1)

where

G1 =
L

2
√

Ξ
y1 sin2 ζ cos ζ sin θdξ,

G2 = − 2

L
√

∆
√
Z
(
Zdy1 + y1y2dy2

)
,

G3 = − L

2
√
Z

sin ζdy2,

G4 =
2

L cos ζ
√

∆
√

Ξ

[
∆dφ− sin2 ζ cos2 ζ cos θ

{
y1y2dy1 +

(
y2

2 +
L4

16
sin4 ζ

)
dy2

}]
, (3.2)

and we have defined

∆ = sin2 ζ

(
y2

1 + cos2 ζy2
2 +

L4

16
sin4 ζ cos2 ζ

)
, Ξ = ∆ sin2 θ + y2

1 sin4 ζ cos2 θ, (3.3)

Z = y2
1 +

L4

16
sin4 ζ cos2 ζ,

and

y1 = r sinχ, y2 = r cosχ , (3.4)

so that we have

64L2
4∑
i=1

(
Gi
)2

=
1

∆ Ξ
cos2 ζ

{
16∆ sec2 ζdφ+ sin2 ζ cos θ

[
L4 sin4 ζ(cosχdr − r sinχdχ)

+16r2 cosχdr
] }2

+
16L4

Ξ
r2 sin4 ζ cos2 ζ sin2 θ sin2 χdξ2

+
16L4

Z
sin2 ζ(cosχdr − r sinχdχ)2

+
256

∆Z

[
L4

16
sin4 ζ cos2 ζ(sinχdr + r cosχdχ) + r2 sinχdr

]2

.

(3.5)

5Also θ1 ≡ θ and S2 ≡ S̃2.
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The NS 2 form is given by

B2 =
r2

Ξ
sin2 ζ sinχ

[
sin2 ζ sinχ

(
cos θdξ ∧ dφ− cosχdξ ∧ dr

)
− r
(

cos2 ζ sin2 θ + sin2 ζ sin2 χ
)
dχ ∧ dξ

]
, (3.6)

while the dilaton is

eΦ =
4

kL cos ζ
√

Ξ
. (3.7)

Notice that this blows up at ζ = 0 indicating that the geometry is singular here, which is

confirmed when one studies the curvature invariants.

The RR sector is given by

F̂2 =
k

16

[
3L4 sin3 ζ cos3 ζ sin θdζ ∧ dθ + 8r sin 2ζ

(
cos θdζ ∧ dr − cosχdζ ∧ dφ

)
+ 8r cos2 ζ sin θdθ ∧ dr − 8 sin2 ζ

(
cosχdr ∧ dφ+ r sinχdφ ∧ dχ

)]
, (3.8)

F̂4 =
k

2
r cos ζ sinχ

[
2 sin ζ

(
sinχdζ ∧ dξ ∧ dr ∧ dφ+ r cos θdζ ∧ dξ ∧ dr ∧ dχ

r cosχdζ ∧ dξ ∧ dφ ∧ dχ
)

+ r cos ζ sin θdθ ∧ dξ ∧ dr ∧ dχ
]
, (3.9)

where the gauge invariant fluxes are expressed in terms of these via F̂ = F ∧ e−B2 .

3.1 Supersymmetry

It was shown in [11, 13] that the NAT dual of ABJM preserves N = 2 supersymmetry in

3d, which means the R-symmetry is U(1) in the dual CFT. The argument relies on a proof

from [13]. In order to see this we must package all the dependence of the original geometry

on the SU(2) isometry in a canonical frame6

ea+3 = eCa(x)(ωa +Aa(x)) (3.10)

where each left-invariant one form ωa appears only once, and xµ are coordinates on some

7d base which fibers the squashed 3-sphere containing the SU(2) isometry. Then there is a

bijective map between spinors independent of the SU(2) directions in this frame and those

preserved by the NAT dual solution. The map acts on the 10 dimensional MW Killing

spinors as

ε̂1 = ε1, ε̂2 = ΩSU(2)ε2, (3.11)

with the matrix7

ΩSU(2) = Γ(10)−eC1+C2+C3Γ456 + vae
CaΓa+3√

e2(C1+C2+C3) + e2Cav2
a

, (3.12)

6We write ea+3 to match notation elsewhere where the canonical vielbeins are e4, e5, e6.
7This expression originally appeared in [5], where it was conjectured to hold by analogy with the

Abelian case.
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where va are dual coordinates in the NAT dual geometry, which we are expressing elsewhere

in terms of spherical or cylindrical polar coordinates v1 = y1 cos ξ, v2 = y2 sin ξ, v3 = y2.

In appendix C.1 we derive a spinor for ABJM independent of the SU(2) directions.

This may be written in terms of 6 dimensional MW spinors on CP3 as in appendix B

η1
+ = ei

3π
4 η+, η2

+ = e−i
3π
4 η+ (3.13)

where (η1,2
+ )∗ = η1,2

− with the sign labeling chirality. It is possible to decompose the 6d

spinors in terms of two in linearly independent parts η+ = π+ + π̃+ obeying the projections

of eq. (C.32). We can then make the coordinate dependence explicit as

π+ = eζγ
34
π0

+, π̃+ = e−ζγ
34
π̃0

+, (3.14)

where we have introduced linearly independent constant spinors obeying the projections

γ1456π0
+ = −π0

+, γ2345π0
+ = π0

+,

γ1456π̃0
+ = −π̃0

+, γ2345π̃0
+ = π̃0

+, (3.15)

in the frame of eq. (A.3). The 10d spinor is constructed as in eq. (B.3), but all dependence

on the CP3 directions is in eq. (3.14), which is clearly independent of the SU(2) directions.

So N = 2 is preserved under the NAT duality transformation. We show in appen-

dices C.2, C.3 that the solution does this by mapping a U(1)’s worth of the SU(3)-structures

supported by CP3 to a U(1)’s worth of dynamical SU(2)-structures defined on the dual in-

ternal space M̂6. Of course only two of these dual objects are truly distinct: those that

are defined in terms of the two linearly independent Killing spinors on M̂6. These may be

summed to give the internal part of the N = 2 Killing spinor in IIB, namely

η̂1
+ = ei

3π
4

(
eζγ

34
π0

+ + e−ζγ
34
π̃0

+

)
,

η̂2
+ = ei

3π
4

(
κ‖
(
eζγ

34
π0

+ + e−ζγ
34
π̃0

+

)
+ κ⊥J

(
e−ζγ

34
π0
− + +eζγ

34
π̃0
−
))
, (3.16)

where κ⊥ and κ‖ satisfy κ2
⊥+κ2

‖ = 1 and are given in eq. (C.27). The Matrix J is defined as

J = i
eC1+C2+C3 cos 2ζγ1 + eC1v1γ

4 + eC2v2γ
5 + eC3v3γ

6√
e2(C1+C2+C3) cos2 2ζ + e2C1v2

1 + e2C2v2
2 + e2C3v3

3

, (3.17)

in the frame of eq. (A.3), where eCa are given in eq. (A.2). However for what follows it is

only important that J is independent of φ.

It turns out that the amount of preserved supersymmetry is left invariant when we

perform an additional T-duality on ∂φ. As proved in [55] (see also [13]), to see this it is

sufficient to show that the Killing spinors are independent of φ in the canonical frame of

T-duality, where φ only appears in the vielbein

eφ = eC(x)
(
dφ+A(x)). (3.18)
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We get to such a frame by performing a SO(4) transformation R in eq. (A.14), on the

canonical NAT dual vielbeins in eq. (A.8). The action of this rotation on the 10d Majorana

Killing spinor will be ε→ Sε, where

S−1γaS = Rabγb. (3.19)

The matrix S will be complicated but will not depend on φ because R does not, which is

all that matters. This together with the fact that eq. (3.16) is φ independent ensures all

supersymmetry must be preserved. Indeed in the next section (see also appendix C.4) we

see that upon lifting to M-theory the NAT-T dual solution preserves N = 2 supersymmetry

in the form of a local SU(2) structure in 7d of the form given in [45].

3.2 Properties of the CFT

In this section we briefly discuss some properties of the CFT associated to the NAT-T dual

solution. The discussion follows very closely the analysis in reference [11] for the IIB NAT

solution. For this reason we will omit most of the explicit computations. The reader is

referred to this reference for more details.

It was shown in [8, 11] that the presence of large gauge transformations in NAT dual

backgrounds allows to constrain quite non-trivially their global properties. In our particular

background (see [11]) it is easy to see that at the singularity ζ = 0 the NS 2-form given

by (3.6) reduces to

B2|ζ∼0= −rVol(S2) , (3.20)

while the space spanned by (ζ, S2) becomes conformal to a singular cone with boundary

S2. Therefore large gauge transformations can be defined on this non-trivial 2-cycle, which

must render

b =
1

4π2

∣∣∣∣∫
S2

B2

∣∣∣∣ (3.21)

in the fundamental region. For this, B2 must transform into B2 → B2 + nπVol(S2) when

r ∈ [nπ, (n+ 1)π].

In turn, the F̂3 and F̂5 field strengths lying on the ζ, θ, φ and ζ, θ, φ, S2 directions of the

NAT dual solution in [11] give rise after the T-duality to F̂2 and F̂4 field strengths lying on

the ζ, θ and ζ, θ, S2 directions, with the second one non-vanishing only in the presence of

large gauge transformations. Accordingly, a Page charge associated to the ζ, θ components

of F̂2 is generated in IIA from the quantization condition

1

2κ2
10

∫
F̂p = T8−pN8−p . (3.22)

As in [11] this charge is to be interpreted as the rank of the gauge group of the CFT dual

to the solution in the r ∈ [0, π] interval. We indeed get N6 = N5, with N5 given by (3.18)

in [11]. Specifically this fixes L to satisfy

kL4 = 64πN6. (3.23)

Note that this means that color branes are now D6-branes spanned on the R1,2×M1×S1
φ×S2

directions. One can indeed check that these branes are BPS when placed at the ζ = 0
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singularity. As in [11] the combination e−φ
√
grr in the DBI action is non-singular, rendering

well-defined color branes.

In the presence of large gauge transformations with parameter n there is also a non-

vanishing D4-brane charge N4 = nN6, equal to the N3 charge in [11]. Indeed one can

check that D4-branes are also BPS when placed at ζ = 0. These branes should also play

a role as color branes for n 6= 0, that is, in the r ∈ [nπ, (n + 1)π] intervals. The physical

interpretation is that N4 charge is created in the worldvolume of a D6 when it crosses n

NS5. It is then plausible that the field theory dual to the solution in the [nπ, (n + 1)π]

intervals arises in a (D4, D6) bound state — NS5 intersection. A similar realization was

suggested in [17] for AdS3 duals.

The charge interpreted as level in ABJM is also doubled under the NAT duality trans-

formation. As a result, after the new Abelian T-duality we get two charges, k6, k4, as-

sociated to the (r, θ) and (r, θ, S2) components of F̂2 and F̂4, respectively. They thus

correspond to D6 and D4 branes or, equivalently, to D4-branes carrying both monopole

and dipole charges. We may express the levels in terms of k and the number of large gauge

transformations performed as

k6 = k
(2n+ 1)π

4
, k4 = k

(3n+ 2)π

12
. (3.24)

Finally, it is easy to check that particle-like brane configurations can be associated to

each of the charges with an interpretation as either rank or level in the IIA background.

These branes are in all cases D2 or D4 branes wrapped on different sub-manifolds of the

internal space. In particular:

• Di-monopoles ↔ D2 on M1 × S1
φ, D4 on M1 × S1

φ × S2

• ’t Hooft monopoles ↔ D2 on {M1, θ}, D4 on {M1, θ, S
2}

• Di-baryons ↔ D2 on {ζ, S1
φ}, D4 on {ζ, S1

φ, S
2}

• Baryon vertices ↔ D2 on {ζ, θ}, D4 on {ζ, θ, S2}

As for the IIB AdS4 solution (see [11] for the details) the di-monopoles and ’t Hooft

monopoles have to sit at ζ = 0 while the di-baryons sit at r = 0.

The previous analysis suggests a dual CFT in the r ∈ [0, π] region defined in terms of a

U(N6)k4×U(N6)−k4 quiver gauge theory with N = 2 supersymmetry, sourced by D6-branes

spanned on the R1,2 ×M1 × S1
φ × S2 directions.8 In turn, for r ∈ [nπ, (n+ 1)π] the gauge

theory would arise from (D4, D6) - NS5 intersections. It was argued in [11] that invariance

under large gauge transformations would imply that the seemingly different CFTs dual to

the solution as the non-compact internal direction increases, could be related by some kind

of duality, as in [39], with the essential difference that in this case the flow parameter would

not be the energy scale but the non-compact internal direction. Reference [17] proposed an

alternative mechanism which, applied to our solution, would imply that new U(N6)×U(N6)

gauge groups would be created by some kind of un-higgsing mechanism, also not related to

8One can see (see [11]) that k4 is the level associated to the D6 color branes.
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an energy scale, every time a NS5-brane is crossed. It would be interesting to understand

better these proposals for the dual CFT as r increases.

In any case, keeping in mind that there is no a priori reason to expect that the new

geometry makes sense as a string theory background,9 we can just take these proposals as

stringy inspired arguments in favor of the existence of a fundamental region in which the

dual CFT would contain the same number of gauge groups as the original one.

Restricting ourselves to the r ∈ [0, π] region, a candidate brane realization of the dual

CFT would then be the T-dual of the brane picture proposed in [11] for the NAT dual

of ABJM:
52

2 : × × × × × × − z1 z2 −
N6D6 : × × × − × − × × × −

(52
2, k4 D4) : × × × − × cos θ − − − sin θ

(3.25)

where 52
2 denotes the IIA exotic brane that arises after a T-duality transformation along

a worldvolume direction of the 52
2 exotic brane of the IIB configuration [11], and z1 and

z2 denote the two special Killing directions of this brane [49, 50]. In our notation the

(52
2, k4 D4) bound state would be extended along the 0124 and x5 cos θ+x9 sin θ directions,

and its relative orientation w.r.t. the 52
2-brane in the 59 plane would depend on k4.

Note that the previous picture implies that in M-theory the corresponding AdS4 ge-

ometry would be sourced in the fundamental region r ∈ [0, π] by Kaluza-Klein monopoles,

as we discuss in the next section.

4 The purely magnetic AdS4 solution in M-theory

In this section we lift the solution of the previous section to M-theory and show that it

falls into the general class of solutions with purely magnetic flux considered in [43]. The

analysis of quantized charges suggests a dual CFT arising from Kaluza-Klein monopoles

and M5-branes wrapped on the Taub-NUT direction of the monopoles. We compute the

central charge and show that it scales with (N5 + N6/2)3/2, where N5 is the number of

wrapped M5-branes and N6 the number of Kaluza-Klein monopoles. This becomes simply

N
3/2
6 in the fundamental region r ∈ [0, π].

4.1 Fluxes

The RR potentials of the IIA solution are given by

C1 =
k

16

(
cos2 ζ cos θ(3L4 sin3 ζ cos ζdζ − 8rdr)− 8r cosχ sin2 ζdφ

)
, (4.1)

C3 −B2 ∧ C1 =
k

2
r2 cos ζ sinχ

(
sin ζ sinχdζ ∧ dξ ∧ dφ− cos θ cos ζdξ ∧ dr ∧ dχ

)
. (4.2)

C1 gives rise to the gµz/gzz component of the 11d metric, where z denotes the eleventh

direction. Given that there is a magnetic charge associated to C1 in IIA, a quantized Taub-

NUT charge arises in 11d. The brane that carries Taub-NUT charge is the Kaluza-Klein

9An essential difference with respect to its Abelian counterpart is that non-Abelian T-duality has not

been proved to be a symmetry of String Theory (see [51]).
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monopole, which is connected to the IIA D6-brane upon reduction along the eleventh,

Taub-NUT direction. Since the IIA solution was sourced by D6-branes in the fundamental

region r ∈ [0, π], Kaluza-Klein monopoles should play the role of color branes in M-theory

in this region. As we will discuss, BPS KK-monopoles spanned on the R1,2×M1×S1
φ×S2

directions can indeed be constructed in 11d that give rise to the D6 color branes in IIA

upon reduction.

(C3 −B2 ∧ C1) gives rise in turn to the 3-form10

Ĉ3 = C3 − ikC3 ∧
k1

k2
(4.3)

in 11d. Note that Ĉ3 has no components along the eleventh direction. This will be of

relevance in our later discussion. The M-theory 4-form flux is then given by

G4 = dC3 = d

(
Ĉ3 + ikC3 ∧

(
k1

k2
+ dz

))
(4.4)

which, as we can see, is purely magnetic. Therefore there will be no M2-branes sourcing

the 11d solution.

As we have noted, Ĉ3 is by construction transverse to the eleventh direction. This po-

tential couples in the worldvolume of M2-branes constrained to move in the space transverse

to the Killing direction and in the worldvolume of M5-branes wrapped on this direction [46].

Moreover, its magnetic components are associated to wrapped M5-branes. Indeed one can

show that these branes are BPS in the 11d background and are to be interpreted as color

branes. They give rise upon reduction to the color D4-branes of the IIA background. Other

field theory observables that we will be able to describe holographically will be constructed

in terms of M2-branes transverse to the Killing direction or M5-branes wrapped on this

direction.

4.2 Geometry and local SU(2) structure

In [45] it was shown that the most general N = 2 preserving solution in M-theory with

an AdS4 factor supports an SU(2) structure in 7d. As the M-theory 4-form G4 is purely

magnetic it actually falls into the more constrained class of solutions originally considered

in [43]. In this section we show that we can uplift the IIA solution to M-theory and fit it

into this class of solutions.

The metric ansatz of [45] is of the form

ds2
11 = e2∆̃

(
ds2(AdS4) + ds2(M7)

)
(4.5)

where we have

e2∆̃ = L2e−
2
3

Φ, ds2(M7) =
1

L2

[
ds2(M6) + e2Φ

(
C1 + dz

)2]
, (4.6)

10Our notation is that ikC3 denotes the interior product of C3 with the Killing vector kµ = δµz , that

points on the eleventh direction, k1 is the 1-form k1 = ikg and k2 the scalar k2 = ikikg, where g stands for

the eleven dimensional metric.
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so that Ricci(AdS4) = −12 g(AdS4) to match the conventions of [45]. The metric on M6

is mearly the internal part of the IIA metric in eq. (3.1).

It is possible to express the internal 7d metric in the form

ds2(M7) = ds2(SU(2)) + E2
1 + E2

2 + E2
3 (4.7)

where ds2(SU(2)) is the metric on a 4 manifold supporting a canonical SU(2)-structure

with associated real 2-form J = J3 and holomorphic 2-form Ω = J1 + iJ2, satisfying

J3 ∧ J3 =
1

2
Ω ∧ Ω̄, J3 ∧ Ω = 0, ιEiJ3 = ιEiΩ = 0. (4.8)

Since G4 is purely magnetic it is possible to define local coordinates such that [43]

E1 =
1

4
e−3∆̃ρ dξ, E2 =

1

4
e−3∆̃ dρ√

1− e−6∆̃ρ2

, (4.9)

where ξ parametrizes the U(1) R-symmetry and ρ is defined through the associated Reeb

vector ξ̃ as |ξ̃|2 = e−6∆ρ2. Supersymmetry then requires that the SU(2) forms satisfy

d
(
e3∆̃
√

1− |ξ̃|2E3

)
= e3∆̃

(
2J3 − 2|ξ̃|E2 ∧ E3

)
,

d
(
|ξ̃|2e9∆̃J2 ∧ E2

)
= e3∆̃|ξ̃|d

(
e6∆̃J1 ∧ E3

)
,

d
(
e6∆̃J1 ∧ E2

)
= −e3∆̃|ξ̃|d

(
e3∆̃J2 ∧ E3

)
, (4.10)

and the flux be given by

G4 =
1

4
dξ ∧ d

(
e3∆̃
√

1− |ξ̃|2J1

)
. (4.11)

We find that the uplift of the IIA solution fits into the above parametrisation. All the

forms are defined in terms of the internal M-theory Killing spinors derived in appendix C.4,

one needs only to plug them into the bi-linears in appendix B of [45]. Performing these

steps with some liberal application of Mathematica, we find the local coordinate

ρ =
k

8
L4y1 sin2 2ζ sin θ, (4.12)

and the solutions specific vielbein

E3 = − e−3∆̃√
1− e−6∆̃ρ2

[
kL2

256
sin2 2ζ

(
L4 sin2 2ζ sin θdθ+64y2dφ−64(y1dy1+y2dy2) cos θ

)

+ L2 cos 2ζ
(
dz + C1

)]
, (4.13)

– 12 –

68 3.2. N = 2 AdS4 solution in M-theory with purely magnetic flux



J
H
E
P
1
0
(
2
0
1
5
)
0
0
4

where C1 is the potential giving rise to the IIA RR 2-form, which may be found in eq. (4.1).

To express the SU(2) forms we introduce the following orthonormal frame

e1 =
1√

X1

√
X2

(
2X1dy2 + 32y1y2 cos2 ζ sin θ

(
sin θdy1 + y1 cos θdθ

))
, (4.14)

e2 =
e−3∆̃kL2

8
√
X1

√
X2

(
cos2 ζ cos θ

(
X1(16y2

2 + L4 sin4 ζ)dy2 − 256y3
1y2 sin2 θdy1

)
−X2 sin2 ζdφ

)

− 32y2e
3∆̃

kL6 sin2 ζ
√
X1

√
X2

(
16y2 cos θdy2 − L4 cos2 ζ sin2 ζ sin θdθ

)
,

e3 =
e−3∆̃kL4 sin 2ζ

32
√
X1

√
1− e−6∆ρ2

(
−X1dζ + 4y1 sin 2ζ cos 2ζ sin θ

(
sin θdy1 + y1 cos θdθ

))
,

e4 =
cos 2ζ

2L2
√
X1

(
16y2dφ+ L4 cos2 ζ sin2 ζ sin θdθ − 16 cos θ

(
y1dy1 + y2dy2

))

− kL6 cos2 ζ sin2 ζ
√
X1e

−3∆̃

8
√

1− e−6∆ρ2

(
dz + C1

)
,

where

X1 = 16y2
1 cos2 θ sin2 ζ + 16y2

2sin
2θ cos2 ζ + L4 sin2 θ sin4 ζ cos2 ζ, (4.15)

X2 = 16y2
1 cos2 θ

(
16y2

1 + L4 sin4 ζ cos2 ζ
)

+ L4 cos2 ζ sin2 ζ sin2 θ
(
16y2

1 + cos2 ζ(16y2
2 + L4 sin4 ζ)

)
.

With respect to this basis we have

J = e1 ∧ e2 + e3 ∧ e4, Ω = eiα(e1 + ie2) ∧ (e3 + ie4), (4.16)

where the phase α is defined through

tanα = − e3∆̃

kL2 cos θ y2
1

. (4.17)

4.3 Properties of the CFT

As in the previous section, some properties of the CFT dual can be inferred by analyzing

the 11d supergravity solution. The picture that arises is simply the 11d realization of the

IIA picture described in subsection 3.2, apart from some subtleties that have to do with

the existence of the special Taub-NUT direction. Indeed, all brane configurations that play

a role in 11d will be either transverse to this direction or wrapped on it.

The non-trivial S2 of the IIA geometry is also present in the 11d uplift. Therefore

one can define large gauge transformations for the uplift of the B2 field, which is the 11d

3-form potential with a component along the Taub-NUT direction, ikC3. Thus, as in the

IIA background, we need to divide r in intervals of length π in order to have ikC3 lying in

the fundamental region. From here the discussion parallels exactly the IIA discussion.

In 11d we find quantized charges N6 and N5 = nN6, equal to the N6 and N4, re-

spectively, in IIA. N6 is associated to KK-monopoles and N5 to M5-branes wrapped on
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the Taub-NUT direction of the monopole. The interpretation is that M5-brane charge

(with the M5-brane wrapped in the Taub-NUT direction of the monopole) is created in

the worldvolume of the KK-monopole when it crosses M5-branes transverse to the Taub-

NUT direction.11 Using the worldvolume effective action that describes a KK-monopole

in 11d [47, 48] one can easily check that it is BPS when placed at ζ = 0. The calcula-

tion parallels the D6-brane calculation in IIA with the only difference that the action is

now written in terms of eleven dimensional fields. Similarly an M5-brane wrapped on the

Taub-NUT direction is also BPS at this location.

As in IIA, the charge interpreted as level in 11d is also doubled, and we get two values

k6 and k5 equal to the k6 and k4 charges, respectively, in IIA. These are now associated to

wrapped M5-branes carrying monopole and dipole charges.12

Similarly, we find particle-like brane configurations, which are either M2-branes trans-

verse to the Taub-NUT direction or M5-branes wrapped on this direction. These branes

are wrapped on the same sub-manifolds of the internal space as in IIA. Namely,

• Di-monopoles ↔ M2 on M1 × S1
φ, M5 on M1 × S1

φ × S2 × S1
z

• ’t Hooft monopoles ↔ M2 on {M1, θ}, M5 on {M1, θ, S
2, S1

z}

• Di-baryons ↔ M2 on {ζ, S1
φ}, M5 on {ζ, S1

φ, S
2, S1

z}

• Baryon vertices ↔ M2 on {ζ, θ}, M5 on {ζ, θ, S2, S1
z}

As for the IIB AdS4 solution (see [11] for the details) the di-monopoles and ’t Hooft

monopoles have to sit at ζ = 0 while the di-baryons sit at r = 0. In these derivations we

have used the action that describes M2-branes transverse to the Taub-NUT direction of

the monopole. In this action ikC3 couples in both the DBI and CS parts, so the M2-branes

are sensitive to large gauge transformations. The details of this action can be found in [46].

Putting together this information, and in analogy with the IIA discussion, we expect a

field theory in the r ∈ [0, π] region described by a U(N6)k5 ×U(N6)−k5 quiver with N = 2

supersymmetry, sourced by KK-monopoles spanned on the R1,2×M1×S2×S1
φ directions,

and with Taub-NUT direction z. A possible brane realization in the fundamental region

r ∈ [0, π] could be

53 : × × × × × × − z1 z2 − z

N6M6 : × × × − × − × × × − z

(53, k4 M5) : × × × − × cos θ − − − sin θ ×
(4.18)

where z denotes the eleventh direction, the M6 is the Kaluza-Klein monopole with Taub-

NUT direction z and 53 is the exotic brane that gives rise to the IIA 52
2 brane upon

reduction [49, 50].

11Recall that in 11d ikC3 → ikC3 + nπVol(S2), and the M5 is magnetically charged with respect to this

field.
12As shown in [46], M5-branes wrapped on an isometric direction can carry KK-monopole charge, with

the Taub-NUT direction equal to the isometric direction.
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4.4 Free energy

We can now calculate the free energy on a 3-sphere in the CFT dual to the solution in

M-theory. This is expressed in terms of the effective 4 dimensional Newton constant G4 as

FS3 =
π

2G4
. (4.19)

One can determine G4 via a dimensional reduction of supergravity on the internal space

M7, the result is

1

16πG4
=

π

2(2π)9

∫
M7

e9∆̃Vol(M7), (4.20)

where we work in units such that lp = 1. For the case at hand the relevant quantity is

e9∆̃Vol(M7) =
k2L6

32
r2 sin3 ζ cos3 ζ sin θ sinχdζ ∧ dθ ∧ dφ ∧ dr ∧ dχ ∧ dξ ∧ dz. (4.21)

Integrating this in the region r ∈ [nπ, (n+ 1)π], z ∈ [0, 2π] and using eqs. (3.23), (3.24) we

arrive at

FS3 =

√
2π

36

(
12 +

N2
6(

N5 + N6
2

)2
)
√
κ6

(
N5 +

N6

2

)3/2

. (4.22)

This reproduces, as expected, the result in IIB, with N5, N3 → N6, N5 [11]. Essentially we

have FS3 ∼
(
N5 + N6

2

)3/2
which reproduces the N3/2 behavior of ABJM. In particular, in

the fundamental region r ∈ [0, π], where N5 = 0, we find

FS3 =

√
2π

33/2

√
k4N

3/2
6 . (4.23)

This is not a surprising result, given that the dependence of the free energy in type

II theories, like the central charge and entanglement entropy of the strip, depends on the

internal directions only through the quantity

Vint =

∫
M6

e−2ΦVol(M6), (4.24)

and is thus invariant under Abelian T-duality13 and uplift to 11d.

So, quite surprisingly, we have found an AdS4 M-theory solution with purely magnetic

flux that falls in the general classification of [43], that originates in M5-branes wrapped on

calibrated 3-cycles, but whose free energy does not exhibit the expected N3 behavior. We

leave a further discussion on this issue for the conclusions.

13It is not invariant though under non-Abelian T-duality, because even if the integrand is invariant, the S3

on which the dualisation is performed is transformed into an M1×S2 space, where M1 is the space spanned

by the r-direction, and thus the domain of integration changes. This is the reason why the prefactors

in (4.23) are not the same as in ABJM.
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5 Conclusions

In this work we have presented a new warped AdS4 solution of M-theory preserving N = 2

supersymmetry, giving the only known solution in this class other than the uplift of Pernici-

Sezgin. A legitimate question to ask is whether this solution is truly distinct from Pernici-

Sezgin, indeed this solution was generated by performing first a NAT then T duality on

AdS4×CP3, and some geometries derived via NAT duality have been shown to fall within

the ansatz of previous solutions. This does not seem to be the case with this example:

the quickest thing to note is that the free energy of Pernici-Sezgin scales as N3 while this

solution scales as N3/2. Additionally the uplift of Pernici-Sezgin is everywhere non singular

while the curvature invariants of this solution blow up in certain regions of parameter space.

One might still wonder if this solution approximates Pernici-Sezgin at least locally away

from the singularity, as was argued in [1] to be the case for the NAT dual of AdS5×S5 and

the Gaiotto-Maldacena geometries [53]. This also does not seem to be the case. Sfetsos

and Thompson were able to find an additional solution to the Gaiotto-Maldacena Toda

equation which gave their solution. The differential equations giving rise to Pernici-Sezgin

are more simple and are solved uniquely. So this solution is truly distinct.

In this work, following on [11], we have taken the view that the range of r is restricted

to lie in a specific cell of length π after n large gauge transformations of B2. The reason is to

ensure that 0 < |
∫
S2 B2|< 4π2, a restriction motivated by string theory. However this does

present an issue for the geometry, we are choosing to end it at a regular point which would

usually demand the inclusion of extra localized sources. From a purely geometric view

point we might choose to take 0 < r < ∞, however this would be very undesirable from

an AdS/CFT perspective. A continuous r would lead to, among other things, a CFT dual

with operators of continuous conformal dimension [8]. An attractive resolution to these

issues is that the NAT duality generates a solution which approximates a better defined

solution free of these pathologies. At any rate, regardless of these potential criticisms,

it seems likely that one could use this work as a stepping stone to further populate the

solution space of purely magnetic M-theory solutions.

Supersymmetric probe branes in the 11d uplift of the Pernici-Sezgin solution were

considered in [52], with an aim at introducing punctures on the Riemann surface along

the lines of [53]. The BPS configurations were shown to preserve two U(1)′s, one more

than required by the R-symmetry of the 3d N = 2 SCFT. This second U(1) corresponds

to a global U(1) in the 3d field theory, and seems to play a key role in the 3d-3d corre-

spondence [54]. It was argued in [52] that a large number of supersymmetric M5’s would

ultimately backreact on the Pernici-Sezgin geometry to produce a new AdS4 solution with

a U(1)2 isometry. It would be interesting to show whether the AdS4 solution obtained in

this paper, containing a U(1)2 isometry, could be related to this physical situation.

That the free energy of our purely magnetic AdS4 solution scales like FS3 ∼ N3/2 rather

than N3 is a little puzzling. It was proved in [45] that the presence of M2 branes, whether

accompanied by M5′s or not, always gives rise to N3/2 behavior. However we know that

our solution cannot contain M2 branes, indeed it is not possible to accommodate M2 branes

in a purely magnetic flux ansatz, so what are we to make of this apparent contradiction.
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Firstly it should be noted that, at least as far as the authors are aware, there is no proof

FS3 ∼ N3 holds universally for all wrapped M5 brane solutions. However this seems like

an inadequate evasion of a confusing result. More likely is that the solution we present

does not correspond to wrapped M5 branes. Indeed, the ansatz taken in [43] to derive the

purely magnetic solutions is defined by requiring the Killing spinors to satisfy the same

projection conditions as the wrapped branes. Yet the solutions need not describe in general

M5-branes wrapped in 3d manifolds in the near horizon limit. The metric we have obtained

is rather complicated and it seems difficult to identify a 3-cycle in the internal geometry

that such branes might wrap. This together with the fact that the free energy does not

scale with N3 is suggesting that this is indeed the case for our solution.

On the other hand, even if the CFT interpretation of the solution is yet very pre-

liminary, we seem to have found that there are quantized charges associated to both

KK-monopoles and M5-branes, with the first being the only sources of the geometry in

the r-region that we have defined as the fundamental region. This is also suggestive of a

geometry not originating from wrapped M5-branes.

Finally, let us comment on something slightly tangential. In the process of discussing

the supersymmetry preserved by purely magnetic M-theory solutions we analised the G-

structure preserved by the NAT dual of ABJM. We showed in appendix C.3 that this IIB

solution preserves a U(1)’s worth of dynamical SU(2)-structures in 6d. We note that, it is

possible to take the intersection of two of these and define an identity structure. However,

given that a complete systematic study of AdS4 solutions to type II supergravity preserving

N = 2 supersymmetry is currently absent form the literature, we have not pursued this

here. Even so we know that, as with the better studied AdS5, N = 1 cases [61, 62],

supersymmetry should be preserved in terms of either a local “SU(2)-structure” or “identity

structure” on the internal co-dimensions of the isometry dual to the U(1) R-symmetry. The

NAT dual of ABJM will certainly fall into the latter class.
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A Some details on the NAT and T duality transformations

In this appendix we give some details on the derivation of the solution in section 3. The

starting point is the AdS4 × CP3 metric written as a Hopf fibration

ds2 = ds2(M7) + e2Ca(ωa +Aa)
2, (A.1)
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where ωa are SU(2) left-invariant 1-forms satisfying dωa = 1
2εabcωb ∧ ωc and

ds2(M7) =
L2

4

[
ds2(AdS4) + 4dζ2 + cos2 ζ

(
dθ2 + cos2 θdφ2

)]
,

e2C1 = e2C2 =
L2

4
sin2 ζ, e2C3 =

L2

4
sin2 ζ cos2 ζ,

A1 = A2 = 0, A3 = cos θdφ, (A.2)

where the AdS radius is 1. Specifically we introduce the vielbeins

ex
µ

=
L

2
ρ dxµ, eρ =

L

2ρ
dρ, e1 = Ldζ, e2 =

L

2
cos ζdθ, e3 =

L

2
cos ζ sin θdφ,

e4 =
L

2
sin ζ ω1, e5 =

L

2
sin ζ ω2, e6 =

L

2
sin ζ cos ζ(ω3 + cos θdφ). (A.3)

The dilaton of this solution is constant and set to eΦ = k
L , while the non trivial fluxes are

F2 = G2 + Ja1 ∧
(
ωa +Aa

)
+

1

2
εabcK

a
0

(
ωb +Ab

)
∧
(
ωc +Ac

)
,

F4 = G4 +Ka
3 ∧

(
ωa +Aa

)
+

1

2
εabcM

a
2

(
ωb +Ab

)
∧
(
ωc +Ac

)
+N1

(
ω1 +A1

)
∧
(
ω2 +A2

)
∧
(
ω3 +A3

)
, (A.4)

where the only non zero components are

G2 = −k
2

cos2 ζ sin θdθ ∧ dφ, J3
1 = −k sin ζ cos ζdζ, K3

0 = −k
2

sin2 ζ,

G4 =
3kL2

8
Vol(AdS4). (A.5)

A.1 The IIB NAT duality

Expressing the solution in this manner allows one to simply read off the result of performing

a NAT duality transformation on ωa using [13]. The dual metric is given by

dŝ2 = ds2(M7) +
3∑

a=1

êa+3 (A.6)

We have introduced cylindrical polars for the dual coordinates

v1 = y1 cos ξ, v2 = y1 sin ξ, v3 = y2, (A.7)

and choose to express the dual canonical vielbeins ê in a way that makes the residual U(1)

isometry given by ∂ξ explicit

cos ξê4 + sin ξê5 = − 1

8L∆
sin ζ

[
4y1y2

(
4dy2 + L2 sin2 ζ cos2 ζ(dξ + cos θdφ)

)
+ dy1

(
16y2

1 + L4 sin4 ζ cos2 ζ
)]
,
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cos ξê5 − sin ξê4 = − 1

8L∆
sin ζ

[
4y1dy2 + cos2 ζ

(
− 4y2dy1 + L2y1 sin2 ζ(dξ + cos θdφ)

)]
,

ê6 = − 1

8L∆
sin ζ cos ζ

[
16y1y2dy1 + dy2(16y2

2 + L4 sin4 ζ)

− 4L2y2
1 sin2 ζ(dξ + cos θdφ)

]
êa = ea, a = xµ, ρ, 1, 2, 3, (A.8)

where we define

∆ = sin2 ζ

(
y2

1 + cos2 ζy2
2 +

L4

16
sin4 ζ cos2 ζ

)
. (A.9)

A NS two form is generated

B2 =
1

∆
y1 sin2 ζ

(
y1dy2 − y2 cos2 ζdy1

)
∧ dξ

− 1

∆
sin2 ζ cos2 ζ cos θ

(
y1y2 dy1 +

(
y2

2 +
L4

16
sin4 ζ

)
dy2

)
∧ dφ

while the dilaton becomes14

e−2Φ̂ =
L2

4
∆ e−2Φ. (A.10)

The solution also has all possible RR forms turned on. These can be found in [11] where

this solution was originally derived.

A.2 The IIA NAT-T duality

We would now like to perform a T-duality on the global U(1) corresponding to ∂φ. To do

this we can once more make use of the results of [13] (see [55] for the original derivation).

In order to do this we need to express the metric and B2 as

dŝ2 = dŝ2(M9) + e2C(dφ+A1)2,

B2 = B +B1 ∧ dφ. (A.11)

Clearly B2 is already in this form, while the same can be achieved for the metric with a

rotation of the vielbein basis ê→ Rê, giving

e2C =
Ξ

4∆
L2 cos2 ζ, A1 =

y2
1 sin4 ζ cos θ

Ξ
dξ, (A.12)

where

Ξ = ∆ sin2 θ + y2
1 sin4 ζ cos2 θ. (A.13)

14Notice that, for simplicity in other expressions, we are extracting a factor of L2

4
with respect to the

definition of ∆ in [13].
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A rotation that achieves this is

R =



−
√
ζ21+ζ22 sin ζ cos θ

√
Ξ0

sin θ(sin ξ−ζ3 cos ξ)√
Ξ0

− sin θ(ζ3 sin ξ+cos ξ)√
Ξ0

√
ζ21+ζ22 sin θ
√

Ξ0

0
ζ3 sin ξ+(ζ21+ζ22+1) cos ξ
√

∆0

√
ζ21+ζ22+1

(ζ21+ζ22+1) sin ξ−ζ3 cos ξ
√

∆0

√
ζ21+ζ22+1

√
ζ21+ζ22ζ3√

∆0

√
ζ21+ζ22+1

0 −
√
ζ21+ζ22 sin ξ√
ζ21+ζ22+1

√
ζ21+ζ22 cos(ξ)√
ζ21+ζ22+1

1√
ζ21+ζ22+1

−
√

∆0 sin θ√
Ξ0

√
ζ21+ζ22 sin ζ cos θ(ζ3 cos ξ−sin ξ)

√
∆0
√

Ξ0

√
ζ21+ζ22 sin ζ cos θ(ζ3 sin ξ+cos ξ)

√
∆0
√

Ξ0
− (ζ21+ζ22) sin ζ cos θ

√
∆0
√

Ξ0


(A.14)

which acts on 2456. We have introduced the following expressions

∆0 = 1 + ζ2
1 + ζ2

2 + ζ2
3 , Ξ0 = sin2 θ∆0 + sin2 ζ cos2 θ

(
ζ2

1 + ζ2
2

)
, ζa = vae

∑
b 6=a Ca .

(A.15)

With the rotated vielbein basis, we may give the RR forms in [11] in terms of them and

then use [13, 55] to read off the T-dual solution, getting then the results in section 3.

B Type-II G-structure conditions for AdS4 solutions

In this appendix we review the G-structure conditions for supersymmetric AdS4 × M6

solutions, which is a slight modification15 of what may be found in [56, 57], but with

notation more akin to [59, 63]. The metric can be cast in the form

ds2 = e2Ads2(AdS4) + ds2(M6), (B.1)

where the AdS radius is 1 and the dilaton has support only in M6. The fluxes have the

same direct product structure, which in terms of the RR polyform we may express as

F = Fint + e4AVol(AdS4) ∧ F̃ . (B.2)

We use a real representation of the 10d gamma matrices16 in which the Dirac and ordinary

conjugates coincide. A 4+6 split is performed on the 10d MW Killing spinors where

ε = (ε1, ε2)T and Γ(10)ε = σ3ε so that we can write

ε1 = eA/2
(
ζ+ ⊗ η1

+ + ζ− ⊗ η1
−
)
,

ε2 = eA/2
(
ζ+ ⊗ η2

∓ + ζ− ⊗ η2
±
)
, (B.3)

where ± labels chirality in 4 and 6 dimensions, so that the upper/lower signs should be

taken in IIA/IIB and (η+)∗ = η− and we take the internal, η1,2 spinor to have unit norm.

Preservation of supersymmetry may be expressed in terms of differential conditions on

two pure spinors

Ψ± = 8 η1
+ ⊗ η

2†
± . (B.4)

15Specifically with the normalization of the internal spinor.
16Specifically for the AdS4 directions Γµ = γ̂µ ⊗ 1, while on CP3 we define Γi = γ(4) ⊗ γi, where

γ̂µ and γa are representations of the gamma matrices in 3+1 and 6 dimensions respectively. We define

Γ(10) = γ(4) ⊗ γ(7), where γ(4) = iγ̂tx
1x2r and γ(7) = −iγ123456.
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These conditions are given by

(d−H) ∧
(
e3A−ΦΨ±

)
= −2e2A−ΦReΨ∓, (B.5)

(d−H) ∧
(
e4A−ΦΨ∓

)
= −3e3A−ΦImΨ± + e4AF̃ ,

where once more the upper/lower signs should be taken in IIA/IIB and

e4AF̃ = ιVol(AdS4)F. (B.6)

The G-structure on M6 can either be an SU(3), when η1
+ and η2

+ are globally parallel,

or SU(2) when they are not. Using a Fierz identity and the Clifford map it is possible

to express Φ± as polyforms. In the SU(3)-structure case we can write this in terms of a

complex 2-form J and a holomorphic 3-form Ωhol as

Ψ+ = e−iθ+e−iJ , Ψ− = eiθ−Ωhol, (B.7)

where the forms may be expressed in terms of the internal spinors as

Jab = −iη†+γabη+,
(
Ωhol

)
abc

= −η†−γabcη+, (B.8)

where

η1
+ = eiα1η, η2

+ = eiα2η, η†+η+ = 1, θ± = α1 ∓ α2, (B.9)

and the forms obey J ∧ J ∧ J = 3i
4 Ωhol ∧ Ω̄hol, J ∧ Ωhol = 0.

For the SU(2)-structure case the internal spinor may be expressed as

η1
+ = eiα1η+, η2

+ = eiα2
(
κ‖η+ + κ⊥χ+

)
(B.10)

where χ†+η+ = 0 and κ2
‖ + κ2

⊥ = 1. The pure spinors may then be expressed in terms of a

holomorphic 1-form z, a real 2-form j and a holomorphic 2-form ωhol as

Ψ+ = i eiθ+e
1
2
z∧z̄ ∧

(
κ‖e
−ij − iκ⊥ωhol

)
,

Ψ− = eiθ−z ∧
(
κ⊥e

−ij + iκ‖ωhol

)
. (B.11)

The various forms may be extracted from the spinor via

za = −iη†−γaχ+, jab =
1

2

(
−iη†+γabη+ + iχ†+γabχ+

)
, (ωhol)ab = iη†−γabχ−,

(B.12)

and obey the conditions,

j ∧ j =
1

2
ωhol ∧ ω̄hol, j ∧ ωhol, ωhol ∧ ωhol = 0, ιzωhol = ιzj = 0. (B.13)

Finally it should be noted that the above conditions are actually the conditions for N = 1

in 3d. We will be concerned with N = 2 supersymmetry which implies a CFT dual with

U(1) R-symmetry. This will manifest itself in the fact that there should be a U(1)’s worth

of pure spinors satisfying eq. (B.5), two of which are independent.17

17In the sense that they can be constructed from two sets of linearly independent internal spinors (η1, η2)

and (η̃1, η̃2).
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C Detailed supersymmetry analysis

In this appendix we shall look at how the Killing spinors are transformed under the sequence

of dualities we perform to reach the M-theory solution of section 4.2. We shall begin by

identifying a set of spinors on CP3 that are uncharged under the SU(2) on which the NAT-

duality is performed.

C.1 A SU(2) T-duality invariant Killing spinor on AdS4 × CP3

We express the metric of ABJM in terms of the vielbein basis of eq. (A.3). Supersymmetry

is preserved in type IIA when the variations of the dilatino and gravitino vanish. For ABJM

which has a constant dilaton and zero Romans mass these constraints are

δλ =
eφ

8

(
3

2
/F 2Γab(iσ2) +

1

4!
/F 4(σ1)

)
ε = 0, (C.1)

δΨµ = Dµε+
eφ

8

(
1

2
/F 2Γab(iσ2) +

1

4!
/F 4(σ1)

)
Γµε = 0,

where Dµε = (∂µ + 1
4ωµ,abΓ

ab)ε. Specifically we have

1

2
/F 2 = −2k

L2
(Γ16 + Γ23 + Γ45),

1

4!
/F 4 =

6k

L2
ΓAdS4 , (C.2)

and

ωx
µρ =

2

L
ex

µ
, ω12 = −ω36 =

tan ζ

L
e2, ω13 = ω26 =

tan ζ

L
e3

ω14 = −ω56 = −cot ζ

L
e4, ω15 = ω46 = −cot ζ

L
e5, ω16 = −2 cot 2ζ

L
e6, (C.3)

ω23 =
1

L
(−2 cot θ1 sec ζe3 + tan ζe6), ω45 =

1

L
(−2 cot θ1 sec ζe3 + (cot ζ + 2 tan ζ)e6).

Inserting the fluxes into the variation of the dilatino and manipulating leads to(
Γ2345 + Γ16(Γ23 + Γ45)

)
ε = ε. (C.4)

This constraint preserves a maximum of 24 real supercharges, however one finds that such

a Killing spinor, which also solves the gravitino variation, must depend on the SU(2)

directions [11]. Here we take a different approach and impose the projection

Γ2345ε = ε, (C.5)

which preserves only half the supercharges. Turning attention to the gravitino variation,

one finds that the components along the AdS4 directions give

Dµε+
1

L
ΓAdS4Γµ(σ1)ε, (C.6)

which is a standard Killing spinor equation for AdS4 which one can solve without any

constraint.
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Using the projection or eq. (C.5) it is possible to show that the gravitino variation

along the CP3 directions reduce to a differential equation and an additional projection

∂ζε+ Γ6(iσ2)ε = 0, (C.7)

Γ1456ε = −
(

cos 2ζ + sin 2ζΓ6(iσ2)

)
ε. (C.8)

These are solved by

ε = e−Γ6(iσ2)ε0 (C.9)

where ε0 is a spinor which depends only on the AdS4 coordinates and obeys

Γ2345ε0 = −Γ1456ε0 = ε0. (C.10)

Thus we have found a Killing spinor preserving 8 real supercharges which gives N = 2

supersymmetry in 3d. This is the most general spinor which is independent of the SU(2)

directions (in the prefered frame) and so [13] informs us that 8 supercharges are preserved

under a SU(2) NAT duality transformation.

As the solution is a direct product and we know that there are 4 independent Killing

spinors preserved by AdS4, we must have 2 preserved on CP3. On the other hand the AdS4

factor and supersymmety preserved by the spinor imply that we are describing a subsector

of ABJM with U(1) R-symmetry. The Killing spinors should be invariant under the action

of this U(1). Indeed we can impose an additional projection

Pαε = Γ6(iσ2)ε, Pα = Γ3(− cosαΓ4 + sinαΓ5) (C.11)

where α is a constant which parametrizes the U(1). Notice that if one defines two spinors

such that Pα1χα1 = Γ6(iσ2)χα1 and Pα2χα2 = Γ6(iσ2)χα2 hold, then we have χ†α1χα2 = 0

when α1 − α2 = π, so we are still describing N = 2 supersymmetry.

C.2 A U(1) of SU(3)-structures on CP3

We know the 6d Killing spinors of ABJM define an SU(3)-structure [58], so the internal

spinors η1
+ and η2

+ must match up to a phase. Specifically we define

η1
+ = ei

θ0
2 η+, η2

+ = e−i
θ0
2 η+. (C.12)

The projective constraints in 6d become

γ1456η+ = −
(

cos 2ζ + P̂α sin 2ζ

)
η+, γ2345η+ = η+, P̂αη+ = γ6η−, (C.13)

where P̂α = γ3(− cosαγ4+sinαγ5). These are still a little complicated, to get to a canonical

frame we first rotate in γ4, γ5, and then γ3, γ4 such that P̂α = −γ̃34 and γ1456η+ = −η+.

This leads to new vielbeins which we express in terms of eq. (A.3) as

ẽa = ea, a = 1, 2, 6,

ẽ3 = cos 2ζe3 + sin 2ζ(− cosαe4 + sinαe5),

ẽ4 = sin 2ζe3 + cos 2ζ(cosαe4 − sinαe5),

ẽ5 = sinαe4 + cosαe5. (C.14)
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With respect to this basis we have

γ̃16η+ = γ̃32η+ = γ̃45η+ = +iη+, γ̃346η+ = −η−, (C.15)

and so the SU(3)-structures are given by the forms

Jα = ẽ1 ∧ ẽ6 + ẽ3 ∧ ẽ2 + ẽ4 ∧ ẽ5, (C.16)

Ωhol,α = −i(ẽ1 + iẽ6) ∧ (ẽ3 + iẽ2) ∧ (ẽ4 + iẽ5).

The forms satisfy eq. (B.5) for any constant α provided

θ+ = θ0 =
3π

2
, θ− = 0, e2A =

L2

4
. (C.17)

One should note that if we take (J0,Ωhol,0) we can generate the whole U(1) again by sending

ψ → ψ− α, inside the left invariant 1-forms ωi. This is what we expect since the isometry

∂ψ gives the geometric realisation of the U(1) subgroup of the R-symmetry of ABJM.

C.3 A U(1) of SU(2)-structures in the non-Abelian T-dual

We would now like to find the G-structure and Killing spinors of the geometry after per-

forming the SU(2) isometry non-Abelian T-duality. Fortunately we can exploit a map for

the SU(2) transformation of the pure spinors that was proposed in [6]

Ψ̂± = Ψ∓Ω−1
SU(2), (C.18)

where in general, in the frame of eq. (A.3)

ΩSU(2) =
1√

1 + ζ2
a

Γ(10)

(
− Γ456 +

3∑
a=1

ζaΓ
a+3

)
, (C.19)

for ζa defined as in [5], which for our parametrisation of ABJM specifically is

ζ1 =
4

L2 cos ζ sin2 ζ
y1 cos ξ, ζ2 =

4

L2 cos ζ sin2 ζ
y1 sin ξ, ζ3 =

4

L2 sin2 ζ
y2. (C.20)

Although eq. (C.18) will give us the pure spinors in type IIB, it is still instructive to study

the MW Killing spinors. The action of the NAT duality transformation on this is given

by [13]

ε̂1 = ε1, ε̂2 = ΩSU(2) ε2, (C.21)

which corresponds to the following 6d spinors

η̂1
+ = ei

3π
4 η+, (C.22)

η̂2
+ = −i e−i

3π
4

[
i

cos 2ζγ̃1 + ζ̃1γ̃
4 + ζ̃2γ̃

5 + ζ3γ̃
6

√
1 + ζaζa

η− +
sin 2ζ√
1 + ζaζa

η+

]
,

with the spinors on AdS4 unchanged. Here we use the frame of eq. (C.14), but with dual

vielbeins, have made use of the projections and defined

ζ̃1 =
4

L2 cos ζ sin2 ζ
y1 cos(ξ + α), ζ̃2 =

4

L2 cos ζ sin2 ζ
y1 sin(ξ + α). (C.23)
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Here we see that α only appears in the combination ξ + α, which indicates that ∂ξ plays

the role of the U(1) R-symmetry in the NAT dual solution, indeed this can be confirmed

by computing the Kosmann derivative along ∂ξ.

The spinors in eq. (C.22) actually define a dynamical SU(2) structure, which means

η̂1
+ and η̂2

+ are not globally parallel and the angle between them is point dependent. We

can simplify the expression for η̂2
+ considerably with further rotations of the vielbein basis.

There is an optimum frame, in which all components of the SU(2)-structure are relatively

simple. The vielbeins are given in this frame by

ê1 =
1

4L3 sin3 ζ cos ζ
√

∆q

(
L4 sin2 ζ sin 4ζ − 32(y1dy1 + y2dy2)

)
, (C.24)

ê2 =
1

4L3 sin3 ζ cos ζ
√

∆p

√
∆q

[
cos ζ

(
sin 2ζ

(
L4 sin2 ζ∆pdθ − 32y2

1 sin 2(ξ + α) sin θdφ
)

− 128y1y2 cos(ξ + α)dζ

)
− 64y1 cos(ξ + α) sin ζ cos 2ζdy2

]
,

ê3 =
1

2L3 sin2 ζ cos ζ
√

∆0

√
∆p

[
cos2 ζ

(
32y1y2 cos(ξ + α)dξ + 32y2 sin(ξ + α)dy1

+
(
32y1y2 cos(ξ + α) cos θ + L4∆0 cos 2ζ sin2 ζ sin θ

)
dφ

)
− 32y1 sin(ξ + α)dy2

]
,

ê4 =
2

L5 sin3 ζ cos ζ
√

∆0

√
∆p

√
∆q

[
cos ζ

(
y1 sin(ξ + α)

(
64y2

1 cos2(ξ + α) + L4 sin2 ζ∆p

)
dξ

+ cos(ξ + α)
(
64y2

1 sin2(ξ + α)dy1 + 64y1y2dy2 − L4∆p sin2 ζdy1

)
+ L4y1∆q sin(ξ + α) sin2 ζ cos θdφ

)
− 2L4y1∆0 cos(ξ + α) cos 2ζ sin ζdζ

]
,

ê5 = − 2

L sin2 ζ cos ζ
√

∆p

[
2y1 sin(ξ + α)dζ − y2 sin 2ζ cos ζ2 sin θdφ

+
1

4
sin 4ζ

(
sin(ξ + α)dy1 + y1 cos(ξ + α)

(
dξ + cos θdφ

))]
ê6 = − 2

L sin2 ζ cos ζ
√

∆q

[
cos 2ζ sin ζdy2

+ 2 cos ζ

(
y2dζ + y1 cos ζ sin ζ

(
cos(ξ + α)dθ + sin(ξ + α) sin θdφ

))]
,

where

∆0 = 1 + ζ2
a , ∆q = cos2 2ζ + ζ2

a , ∆p = ∆q − sin2 2ζ̃ζ2
1 . (C.25)

In this basis the action of NAT duality on the 6d spinors is simply

η̂1 = ei
θ0
2 η+, η̂2

+ = −e−i
θ0
2
[
κ‖η+ + iκ⊥γ̂

1η−
]

(C.26)
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where

κ‖ =
sin 2ζ√
1 + ζaζa

, κ⊥ =

√
cos 2ζ + ζaζa

1 + ζaζa
(C.27)

and κ2
‖+κ

2
⊥ = 1. The projections the original spinor obeys are most succinctly expressed as

γ̂2345η+ = η+, γ̂1456η+ = −(κ⊥ − κ‖γ̂34)η+, (C.28)

in the basis where γ(7)η+ = η+ as before. The U(1)’s worth of SU(2)-structure is given by

the following forms

zα = ê1 + iê6,

jα = (κ⊥ê
3 − κ‖ê4) ∧ ê2 + (κ⊥ê

4 + κ‖ê
3) ∧ ê5,

ωhol,α = −i
(
(κ⊥ê

3 − κ‖ê4) + iê2
)
∧
(
(κ⊥ê

4 + κ‖ê
3) + iê5

)
, (C.29)

which satisfy the supersymmetry conditions of eq. (B.5) for any constant α provided

θ+ = 0, θ− = θ0 =
3π

2
, e2A =

L2

4
. (C.30)

We could take the intersection of the two linearly independent SU(2) structures defined for

α = 0 and α = π, and define an identity structure. However, the supersymmetry conditions

of such an object are absent from the literature at present and deriving them is outside

the scope of this work.

C.4 Killing spinors in M-theory

Before we can define the M-theory Killing spinor, we must first derive the MW Killing

spinors in type IIA after an additional T-duality is performed. As we want to make

contact with [45] we need to work with the two linearly independent spinors in 6d. These

are given by

π1
+ = ei

θ0
2 π+, π2

+ = e−i
θ0
2 π+, π̃1

+ = ei
θ0
2 π̃+, π̃2

+ = e−i
θ0
2 π̃+, θ0 =

3π

2
(C.31)

and are such that

γ1456π+ = −
(

cos 2ζ − sin 2ζγ34
)
π+, γ2345π+ = π+, γ246π+ = −π−

γ1456π̃+ = −
(

cos 2ζ + sin 2ζγ34
)
π̃+, γ2345π̃+ = π̃+, γ246π̃+ = π̃−, (C.32)

in the frame of eq. (A.3). The independent 10d MW spinors ε1,2 and ε̃1,2 are then con-

structed in the obvious way from eq. (B.3), with η → π and using the same spinors on AdS4.

We must act on these spinors first with ΩSU(2), which in this frame is as in eq. (C.19), then

with ΩU(1), which gives the transformation of the spinor under the Abelian T-duality [55].

In the frame of eqs. (A.3), (A.8) this is most succinctly expressed as

ΩU(1) =
1√

∆0

√
Ξ0

sin ζ cos θΓ(10)

[(
− ζ2 + ζ1ζ3

)
Γ4 +

(
ζ1 + ζ2ζ3

)
Γ5 −

(
ζ2

1 + ζ2
2

)
Γ6

]
−
√

∆0√
Ξ0

sin θΓ(10)Γ3.
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We take the 10d MW Killing spinors in IIA after the NAT-T duality transformation to be

ˆ̂ε1 = ε1, ˆ̂ε2 = ΩU(1)ΩSU(2)ε2, (C.33)

with an equivalent expression with ε→ ε̃, which means that the new 6d Killing spinors are

given by

ˆ̂π1
+ = ei

θ0
2 π+, ˆ̂π2

+ = −e−i
θ0
2

(
κ̂‖π+ + κ̂⊥Fπ−

)
,

ˆ̂
π̃1

+ = ei
θ0
2 π̃+,

ˆ̂
π̃2

+ = +e−i
θ0
2

(
κ̂‖π̃+ + κ̂⊥F π̃−

)
, (C.34)

where

κ̂‖=
sin 2ζ sin θζ2√

Ξ0
, κ̂⊥ =

√
1− κ̂2

‖,

F=
i√

Ξ0−sin2 2ζ sin2 θ ζ2
2

(
sin ζ cos θ

(
ζ2γ

2−ζ1γ
3
)
−sin θ

(
cos 2ζ ζ2γ

1−γ5−ζ3γ
4+ζ1γ

6
))
.

(C.35)

Clearly eq. (C.34) supports a U(1) of dynamical SU(2)-structures, as was the case in type-

IIB, which we will not explicitly derive.

We are know ready to construct the two independent M-theory Killing spinors. These

can be expressed in terms of the spinors in IIA as

η1 = e−Φ/6
(
ε1 + ε2), η2 = e−Φ/6

(
ε̃1 + ε̃2). (C.36)

In the conventions of [45] the M-theory spinors are

ηi = e∆̃/2

(
ψi+ ⊗ χi +

(
ψi+
)c ⊗ χci), (C.37)

where e
∆̃
2 =e

Ã
2
−Φ

6 and e2Ã is a modified warp factor of AdS4 in IIA such that Ricci(AdS4) =

−12g(AdS4). Thus if we identify the AdS4 spinors of IIA with those of eq. (C.37) we see that

χ1 =
1√
2

(
ˆ̂π1

+ + ˆ̂π2
−
)
, χc1 =

1√
2

(
ˆ̂π1
− + ˆ̂π2

+

)
,

χ2 =
1√
2

(ˆ̂
π̃1

+ +
ˆ̂
π̃2
−
)
, χc2 =

1√
2

(ˆ̂
π̃1
− +

ˆ̂
π̃2

+

)
, (C.38)

which clearly satisfy χ̄1χ1 = χ̄2χ2 = 1, and from these one can construct spinors of charge

±2 under the U(1) R-symmetry

χ± =
1√
2

(
χ1 ± χ2

)
. (C.39)

It is then simply a matter of plugging the χ± of this section into the spinor bi-linears in

appendix B of [45], and rotating the frame to reproduce the results of section 4.2. Note that

the frame used in this section needs to be rotated as in eq. (A.14) to reach the vielbein

basis where flat directions 2456 may be identified with G1,2,3,4 of eq. (3.2) and the rest

with eq. (A.3).
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[8] Y. Lozano, E.Ó. Colgáin, D. Rodŕıguez-Gómez, Hints of 5d Fixed Point Theories from

Non-Abelian T-duality, JHEP 05 (2014) 009 [arXiv:1311.4842] [INSPIRE].
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T-duality in type-II supergravity, Class. Quant. Grav. 32 (2015) 035014 [arXiv:1409.7406]

[INSPIRE].
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We report on a classification of supersymmetric solutions to 11D supergravity with SOð2; 2Þ × SOð3Þ
isometry, which are AdS=CFT dual to 2D CFTs with N ¼ ð0; 4Þ supersymmetry. We recover the
Maldacena, Strominger, Witten near-horizon with small superconformal symmetry and identify a class of
AdS3 × S2 × S2 × CY2 geometries with emergent large superconformal symmetry. This exhausts known
compact geometries. Compactification of M-theory on CY2 results in a vacuum of 7D supergravity with
large superconformal symmetry, providing a candidate near-horizon for an extremal black hole and a
potential new setting to address microstates.
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I. INTRODUCTION

To obey the second law of thermodynamics, black holes
must possess entropy, which Bekenstein and Hawking
showed is proportional to the area of the event horizon
[1]. This observation paved the way for the holographic
principle and AdS=CFT [2]. One of the earliest AdS=CFT
calculations (it predates the conjecture) shows that asymp-
totic symmetries of gravity in AdS3 correspond to the
Virasoro algebra [3], a feature of 2D CFTs. This observa-
tion together with the Cardy formula [4] for the asymptotic
growth of states for a CFT with central charge c is enough
to provide a microscopic derivation for the Bekenstein-
Hawking (BH) entropy [5,6]. For black holes with AdS3
near-horizons, this methodology has been an incredible
success, culminating in recent years in generalizations to
extreme Kerr black holes [7], potential astrophysical
bodies [8].
However, Einstein’s gravity is at best an effective

description [9], and the BH entropy is expected to be
corrected in a candidate UV complete theory, such as M-
theory. More concretely, compactifying the 6D M5-brane
theory on a four-cycle in a Calabi-Yau three-manifold,CY3,
gives rise to the Maldacena, Strominger, Witten (MSW)
CFT [10], withN ¼ ð0; 4Þ supersymmetry at low energies.
The corresponding black hole exhibits the near-horizon
AdS3 × S2 × CY3, and subleading corrections to the BH
entropy have been shown to perfectly match corrections to
the central charge [10,11].
The MSWCFTexhibits small superconformal symmetry

[12] with an SUð2Þ R symmetry that is manifest in the two-
sphere in the dual geometry. Since other superconformal
symmetries exist [13–15], a rich class of AdS=CFT

geometries can be expected, e.g. [16]. In this paper, we
identify a new class of M-theory vacua AdS3 × S2×
S2 × CY2, implying the existence of a distinct class of
2DN ¼ ð0; 4Þ CFTs with large superconformal symmetry
and R symmetry SUð2Þ × SUð2Þ. We recall that CFTs with
large superconformal symmetry remain largely enigmatic.
While constructions based on string theory, such as AdS3 ×
S3 × S3 × S1 [17,18], exist, contrary to small superconfor-
mal CFTs, interpretation as a symmetric product CFT is
problematic [19]. This issue continues to attract exciting
new holographic proposals [20,21], against a backdrop
where we have witnessed a deeper understanding of the role
of integrability [22–24].
More concretely, we report the results of a complete

classification of supersymmetric solutions to 11D super-
gravity, the low-energy description of M-theory, where we
assume SOð2; 2Þ × SOð3Þ isometry, i.e. warped AdS3 ×
S2 ×M6 spacetime, with M6 being an SUð2Þ-structure
manifold. Since 2D N ¼ ð0; 4Þ superconformal field the-
ories (SCFTs) are expected to exhibit at least an SUð2Þ
isometry, corresponding to the R symmetry, this is a
minimal requirement. One may contemplate a distinct
class where the SUð2Þ R symmetry is realized as a
squashed three-sphere, ~S3, but such an ansatz would
preclude the MSW geometry. Indeed, noncompact AdS3 ×
~S3 × S2 × T3 geometries, generated via non-Abelian T-
duality [25,26], were identified recently in Ref. [27]. It
is also an immediate corollary of this work that compact
AdS3 × ~S3 × ~S3 × T2 geometries with N ¼ ð0; 4Þ super-
symmetry may be generated through T-duality-shift-T-
duality (TsT) transformations [28].
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Our results pertain to general warped AdS3 × S2 space-
times and are not intended to apply to all M-theory
geometries dual to 2D N ¼ ð0; 4Þ SCFTs. Within our
assumptions, we prove that M6 is either CY3, thus
recovering the MSW geometry, or it possesses an addi-
tional SUð2Þ R symmetry that emerges from the super-
symmetry analysis. Truncating the emergent SUð2Þ to
Uð1Þ, we recover a known class [29,30] of spacetimes
with SUð2Þ ×Uð1Þ isometry [31].
The existence of a class of AdS3 × S2 × S2 × CY2

solutions to 11D supergravity, with 2D N ¼ ð0; 4Þ
SCFT duals, comes somewhat as a surprise. In the case
where CY2 ¼ T4, it was shown long ago that there are
geometries related through T-duality to well-known
AdS3 × S3 × S3 × S1 solutions in 10D [17]. When
CY2 ¼ K3, the class appears new. It did not feature in
a study of wrapped M5-brane geometries [29]. More
recently, M-theory geometries dual to 2D N ¼ ð0; 2Þ
SCFTs have been discussed, but where supersymmetry is
enhanced to N ¼ ð0; 4Þ, the geometry is either MSW
[32,33], or no good AdS3 vacuum exists [34,35].
Moreover, it is expected that M-theory on K3 is dual
to heterotic string theory on T3 [36], a statement that can
be made precise in the supergravity limit [37]. Despite
this, in a recent classification of heterotic supergravity
[38], the only compact, regular solutions with eight
supersymmetries are shown to be AdS3 × S3 × CY2 [39].
It can be expected our simply stated results will be

of interest to anyone studying the holography of 2D
N ¼ ð0; 4Þ CFTs.

II. SOð2;2Þ × SOð3Þ-INVARIANT SPACETIMES

We recall that bosonic sector of 11D supergravity
consists of a metric, g, and a three-form potential, C, with
four-form field strength, G ¼ dC. The equations of motion
follow from the action

S ¼ 1

2κ2

Z
�R −

1

2
G ∧ �G −

1

6
C ∧ G ∧ G: ð1Þ

Supersymmetric solutions satisfy the Killing spinor equa-
tion (KSE):

∇Mηþ
1

288
½ΓNPQR

M − 8δNMΓPQR�GNPQRη ¼ 0; ð2Þ

where M;N ¼ 0;…; 10, ∇Mη≡ ∂Mηþ 1
4
ωMNPΓNPη, with

spin connection ω, and η is a Majorana Killing spinor. It is
well known that the Einstein equation is implied by the
KSE once the Bianchi identity, dG ¼ 0, and equation of
motion for C hold [40].
2D N ¼ ð0; 4Þ CFTs enjoy both SOð2; 2Þ conformal

symmetry and SUð2Þ≃ SOð3Þ R symmetry, which moti-
vates the general ansatz

ds2 ¼ e2A
�
1

m2
ds2ðAdS3Þ þ e2Bds2ðS2Þ þ ds2ðM6Þ

�
;

G ¼ 1

m3
volðAdS3Þ ∧ Aþ volðS2Þ ∧ Hþ G; ð3Þ

wherem is the inverse AdS3 radius, A, B denote scalar warp
factors and A, H, G are respectively closed one-, two- and
four-forms. The curvatures of symmetric spaces are canoni-
cally normalized and fields depend only on the coordinates
of the internal 6D Riemannian manifold M6.
In order to characterize the internal space and the fields,

we decompose the 11D gamma matrices [41],

Γμ ¼ τμ ⊗ σ3 ⊗ γ7;

Γα ¼ 12 ⊗ σα ⊗ γ7;

Γm ¼ 12 ⊗ 12 ⊗ γm; ð4Þ

and 11D Killing spinor,

η ¼ ψ ⊗ eA=2½χþ ⊗ ϵþ þ χ− ⊗ ϵ−�; ð5Þ

where μ ¼ 0, 1, 2 label AdS3 directions, α ¼ 1, 2 denote
those of S2, m ¼ 1;…; 6 correspond to M6 and we define
γ7 ≡ iγ123456. ψ is a solution to the AdS3 KSE, ∇μψ ¼
1
2
τμψ , resulting in Poincaré spinors of definite chirality,

while χ� denote an SUð2Þ-doublet satisfying the KSE on
S2, ∇αχ� ¼ � i

2
σαχ�, with χ− ¼ σ3χþ. It is a common

feature of Refs. [30,41,42] that the Majorana condition is
not manifest, however conjugate spinors, ηc, may easily be
constructed e.g. [43]. Following the decomposition
through, one determines the effective 6D KSE equations
in terms of ϵ� [41] and recasts them in terms of conditions
on differential forms [44], which we illustrate later.
We stress that there is a priori no relation between ϵ�,

even if one is to be expected [45]. In related work, the
authors of Ref. [42] simplified the problem by omitting a
term in the four-form flux, which enabled a simplification
of the KSE analysis, before showing that the omitted term
could not be reconciled perturbatively. This term was later
ruled out in general [46]. In the current setting, this
simplification involves fixing A ¼ G ¼ 0. However, since
geometries with nonzero A, H, G can be generated via
T-duality [27], this simplification is difficult to motivate.

III. SUPERSYMMETRY CONDITIONS

We review the salient conditions on bilinears, defined in
the Appendix, which we construct from spinors ϵ� [41],
which encapsulate the local supersymmetry conditions we
must solve. First, supersymmetry demands that the follow-
ing bilinears vanish [41],

W− ¼ Xþ ¼ ReðYÞ ¼ ~Z ¼ 0: ð6Þ
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Moreover, the remaining bilinears are constrained:

2mVþ þ e−BImðYÞ

¼ e−3A

2

�
1

2!
ImðL3Þmnð�6GÞmn þ Kþ

mAm

�
; ð7Þ

~Y ¼ −
i

2meB
Wþ; Z ¼ −

i
2meB

X−: ð8Þ

Thus, there are only three real scalars, V�, Wþ, and one
complex scalar, X−, which can be independent.
From the vector spinor bilinears, one can identify four

real Killing vectors on M6 [41], three of which, Imð ~K3Þ,
ReðK4Þ and ImðK4Þ extend to symmetries of the overall
solution (3). In contrast, the S2 warp factor (also H)
depends on ~Kþ, thus hinting at spacetimes with larger
superisometry groups [47]. Thankfully, ~Kþ may be
truncated out consistently provided V− ¼ 0, i.e. for 6D
spinors ϵ� with equal norm. Henceforth, we consider
ϵ†þϵþ ¼ ϵ†−ϵ−, so that V− ¼ ~Kþ ¼ 0.
The scalars satisfy differential constraints [41],

dVþ ¼ 0; ð9Þ

d½e−BImðYÞ� ¼ 0; ð10Þ

e−3Ad½e3AX−� ¼ −2m ~K4; ð11Þ

e−3Ad½e3AWþ� ¼ 2mReðK3Þ; ð12Þ

while the vectors must satisfy

d½e3AþBK−� ¼ −e−BImðYÞHþ e3A ~L1; ð13Þ

d½e6AþBReð ~K3Þ� ¼ −e3AþBImðYÞ �6 G
− e3AþBA ∧ K− − e6AImðL3Þ; ð14Þ

d½e6Aþ2BImð ~K3Þ� ¼ −e3AWþHþ 2me6Aþ2BL1

þ 2e6AþBReðL3Þ; ð15Þ

d½e6Aþ2BK4� ¼ ie3AX−Hþ 2me6Aþ2BL6

− 2ie6AþB ~L4: ð16Þ

We have removed all trivial bilinears and conditions that
play no role in our analysis [48]. With ~Y pure imaginary
from (8), and ~Kþ zero, A and G are fully determined in
terms of bilinears:

A ¼ 2me3A

Vþ Kþ; G ¼ 2me3A

Vþ �6 ImðL3Þ: ð17Þ

This ends our review of the supersymmetry conditions
of Ref. [41]. We will now solve the conditions by

evoking G-structures to characterize the internal manifold
M6.
We introduce two unit-norm, chiral spinors, ξi, which are

orthogonal, ξ†i ξj ¼ δij. Each chiral spinor individually
defines an SUð3Þ-structure. To see this, we introduce
projection conditions,

γ12ξ1 ¼ γ34ξ1 ¼ γ56ξ1 ¼ iξ1 ⇒ γ7ξ1 ¼ ξ1;

−γ135ξ1 ¼ ξ�1; ð18Þ

permitting us to specify the SUð3Þ-structure through a

two-form Jð3Þi ¼ − i
2
ξ†i γmnξiem ∧ en and (3,0)-form

Ωð3Þ
i ¼ − 1

3!
ξTi γmnpξiem ∧ en ∧ ep. With the second spinor,

γ5ξ
�
2 ¼ ξ1, whose projection conditions follow from (18),

we can define two canonical SUð3Þ-structures, with forms

(Jð3Þ1 , Ωð3Þ
1 ) and (Jð3Þ2 , Ωð3Þ

2 ), or equivalently, a canonical
SUð2Þ-structure, which is specified by three two-forms and
two one-forms:

Jα ¼ −
i
4
ðσαÞijξ†i γmnξjem ∧ en; ð19Þ

K1 þ iK2 ¼ −
1

2
ϵijξTi γmξje

m; ð20Þ

where σα, α ¼ 1, 2, 3 denote Pauli matrices. In general, we
expand ϵ� in terms of the chiral spinors and their
conjugates

ϵþ ¼ α1ξ1 þ α2ξ
�
1 þ α3ξ2 þ α4ξ

�
2;

ϵ− ¼ β1ξ1 þ β2ξ
�
1 þ β3ξ2 þ β4ξ

�
2; ð21Þ

where αi; βi ∈ C. Modulo phases of ξi, these are the most
general spinors consistent with SUð2Þ-structure.

IV. SUð2Þ-STRUCTURE MANIFOLDS

As a warm-up, we consider SUð3Þ-structure manifolds
by simply eliminating, α3, α4, β3, β4, so that only ξ1
remains in (21). We recall that SUð3Þ-structure manifolds
are classified according to five torsion classes Wi [49]. We
will now demonstrate that all torsion classes vanish, so
Calabi-Yau is the only M6 with SUð3Þ-structure.
One can use the constraints from vanishing scalars (6) to

infer, ϵ− ¼ �iϵþ, where ϵþ need not be chiral. If it is chiral,
the argument reverts to Ref. [41]; if nonchiral, since
Kþ ¼ ImðL3Þ ¼ 0, A and G also are zero. Next, from
(7), we deduce 2meB ¼ ∓1, and from (13),
H ¼ �e3A=ð2mÞJð3ÞðVþ ¼ 1Þ. Further differentiating
(13)–(16), we can directly confirm that dJð3Þ ¼ dΩð3Þ ¼ 0.
We now turn to the generic case. Evaluating the vector

bilinears in terms of αi, βi using (21), we find that K− and
~K− are orthogonal allowing us without loss of generality to
align them with the e5, e6 axes of the internal space.
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Moreover, imposing (6), and V− ¼ ~Kþ ¼ 0, we determine
the following relations:

β1 ¼ −
½α3ðα24 þ β24Þ þ α1ðβ2β4 þ α2α4Þ�

ðβ2α4 − α2β4Þ
;

β3 ¼
½α1ðα22 þ β22Þ þ α3ðβ2β4 þ α2α4Þ�

ðβ2α4 − α2β4Þ
;

if1 ¼ β2α
�
2 þ β4α

�
4; f2 ¼ α�1α4 þ α�2α3; ð22Þ

where fi ∈ R are yet to be determined. With SUð2Þ-
structure, it follows from ~Kþ ¼ 0 that Kþ ¼ 0 and, as a
result of (17), A ¼ 0, i.e. no electric flux. As another
consequence of these relations, we discover Reð ~K3Þ ¼ 0,
which through (14) and (17) leads to the constraint

Y ¼ −
i

2meB
Vþ: ð23Þ

Since Vþ is a constant, so too is eB through (10).
We can now combine this with (8) to find that

�
β4 þ

i
2meB

α4

�
ðf2 − α�2α3 − α�3α2Þ ¼ 0: ð24Þ

If we impose the vanishing of the first bracket, through the
constraints it follows that G ¼ 0 and βi ¼ −iαi, i.e.
ϵ− ¼ −iϵþ, so that we recover Calabi-Yau. To find some-
thing new, we impose the second condition, which implies
K− ¼ ~K− ¼ 0. We recall that these are the original vectors
that we aligned with the axes, so now we have the freedom
to chooseK3 and ~K3, which are orthogonal, and rotate them
to align with the axes. Doing so, we find it is possible to
solve for all the spinor coefficients so that our constraints
are satisfied:

α1 ¼
ffiffiffiffiffiffiffi
Vþp

cos
ζ

2
cos

θ

2
eiφ1 ; α2 ¼

ffiffiffiffiffiffiffi
Vþp

sin
ζ

2
cos

θ

2
eiφ2 ;

α3 ¼
ffiffiffiffiffiffiffi
Vþp

cos
ζ

2
sin

θ

2
eiφ3 ; α4 ¼

ffiffiffiffiffiffiffi
Vþp

sin
ζ

2
sin

θ

2
eiφ4 ;

β1 ¼
1

2

�
L
R2

cot
ζ

2
α4 − i

L
R1

α1

�
; β4 ¼

β2
β�1

β�3;

β3 ¼ −
1

2

�
L
R2

cot
ζ

2
α2 þ i

L
R1

α3

�
; β2 ¼ −

α2
α�1

β�1;

ð25Þ

where φ1 þ φ2 ¼ φ3 þ φ4 and we have redefined
m ¼ L−1, R1 ¼ eB, R2 ¼ eB=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2e2B − 1

p
. With these

expressions, we determine Wþ ¼ Vþ cos ζ, X− ¼
Vþ sin ζeiφ1þiφ2 and solve (11) and (12) to show the warp
factor eA is a constant and

e5 ¼ −R2dζ; e6 ¼ −R2 sin ζdχ; ð26Þ

where we have defined dχ ¼ dðφ1 þ φ2Þ. This allows us to
identify the one-forms dual to the Killing vectors,

Imð ~K3Þ ¼ −
LVþ

2
sin2ζdχ;

K4 ¼ −
LVþ

2
eiχðdζ þ i cos ζdχÞ; ð27Þ

which correspond to an emergent SUð2Þ. We can ensure the
Killing vectors are canonically normalized through the
choice Vþ ¼ 2R2

2=L. Solving the remaining supersym-
metry conditions, one arrives at the conclusion that χ
aside, the other angular parameters are constant, with
M6 being a direct product of S2 and CY2, more concretely
T4 or K3. The final expression for the four-form flux reads

G ¼ 2e3A

LVþ ½−R2
1
~L1 ∧ volðS2Þ þ �6ImðL3Þ�: ð28Þ

It is easy to check that the equations of motion are satisfied,
in line with expectations [40]. We also see that both ξ1, ξ2
and conjugates need to appear in the spinor. This may be
contrasted with the spinor considered in Ref. [50], which is
not the most general, and would appear to preclude this
outcome. For this reason, setting β4 ¼ α4 ¼ 0 in (24), one
recovers the results of existing classifications [29,30].
Setting A ¼ 0, since the overall warp factor is constant,
we can confirm the radii satisfy

4

L2
¼ 1

R2
1

þ 1

R2
2

: ð29Þ

The ratio between S2 radii, α, corresponds to the
supergroup Dð2; 1; αÞ, with bosonic subgroup SLð2;RÞ×
SUð2Þ × SUð2Þ.
To establish the connection to minimal ungauged super-

gravity in 7D [51], we exploit the following consistent
Kaluza-Klein reduction ansatz:

ds211 ¼ e−
8
5
Bds27 þ e2Bds2ðCY2Þ;

G ¼ F þ
X3
a¼1

Fa ∧ Ja; ð30Þ

where Ja denote the three self-dual harmonic two-forms of
CY2, B is a scalar and F and Fa are respectively field
strengths corresponding to a three-form and one-form
potentials, F ¼ dC, Fa ¼ dAa. The resulting action in
Einstein frame in 7D is

L7 ¼ Rvol7 −
36

5
dB ∧ �7dB −

1

2
e
24
5
BF ∧ �7F

− e−
12
5
BFa ∧ �7Fa − F ∧ Fa ∧ Aa: ð31Þ

To cast the action in the original notation of Ref. [51], one
should employ the following redefinitions:
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B ¼
ffiffiffi
5

p

6
ϕ; Fus ¼

ffiffiffi
2

p
Fthem; Fa

us ¼
ffiffiffi
2

p
Fa
them: ð32Þ

V. DISCUSSION

We have initiated a classification of all solutions to 11D
supergravity with SOð2; 2Þ × SOð3Þ isometry. This is the
simplest geometric signature of a supergravity solution dual
to a 2D CFTwithN ¼ ð0; 4Þ supersymmetry, including the
MSW CFT. In the process, we have identified a novel class
of near-horizon geometries in M-theory with large super-
conformal symmetry. Compactifying M-theory on CY2, we
identify a resulting AdS3 × S2 × S2 vacuum to 7D super-
gravity, thus providing a candidate near-horizon for an
extremal black hole and a potential new controlled setting
to count black hole microstates.
The M-theory geometry provides a unifying description

of well-known AdS3 × S3 × S3 × S1 geometries of type II
string theory through T-duality [27] and heterotic vacua via
M-theory/heterotic duality [36]. A careful treatment of the
central charge reveals the expected form of a large super-
conformal algebra [52]

c ∼
kþk−

kþ þ k−
; ð33Þ

with affine SUð2Þ� current algebras at levels k� related to
the quantized charges, yet where c ∼ N2, for large charge
N, and not the more usual c ∼ N3 of geometries corre-
sponding to M5-branes.
Our work has two interesting implications. First, it is

striking that the AdS3 × S2 × S2 × CY2 geometries are not
identifiable as AdS3 limits of wrapped M5-branes [29]. This
suggests the M5-brane picture is novel and motivates further
study to understand anomaly inflow [11]. Second, as we
have shown, since 11D supergravity compactifies on CY2 to
7D minimal supergravity, the AdS3 × S2 × S2 solution hints
at being the near-horizon of an extremal black hole. While
such solutions have in principle been classified [53], we are
not aware of a near-horizon uniqueness theorem in 7D,
cf. [54]. Assuming a black hole exists, strong parallels to the
MSW case, with M-theory compactified on Calabi-Yau, are
expected to facilitate a microscopic derivation of the entropy.
Since the small superconformal algebra is recovered from
the large one through a decompactification of a two-sphere,
it is tempting to speculate that contact with the MSW results
may be made in the same limit.
Last, we remark that we have assumed SUð2Þ-structure,

and more general solutions with identity structure are known
to exist [27]. We hope to extend the classification to consider
more general internal manifolds in future work [52].
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APPENDIX: SPINOR BILINEARS

In our conventions, the 6D gamma matrices are
Hermitian γ†m ¼ γm and antisymmetric γTm ¼ −γm.
Consistent with the symmetries of the gamma matrices,
given ϵ�, we can define an exhaustive set of scalar

V� ¼ 1

2
ðϵ†þϵþ � ϵ†−ϵ−Þ;

W� ¼ 1

2
ðϵ†þγ7ϵþ � ϵ†−γ7ϵ−Þ;

X� ¼ 1

2
ðϵTþϵþ � ϵT−ϵ−Þ;

Y ¼ ϵ†þϵ−; ~Y ¼ ϵ†þγ7ϵ−;

Z ¼ ϵTþϵ−; ~Z ¼ ϵTþγ7ϵ−; ðA1Þ

and vector spinor bilinears:

K�
m ¼ 1

2
ðϵ†þγmϵþ � ϵ†−γmϵ−Þ;

~K�
m ¼ i

2
ðϵ†þγmγ7ϵþ � ϵ†−γmγ7ϵ−Þ;

K3
m ¼ ϵ†þγmϵ−; ~K3

m ¼ ϵ†þγmγ7ϵ−;

K4
m ¼ ϵTþγmϵ−; ~K4

m ¼ ϵTþγmγ7ϵ−; ðA2Þ

where factors of i ensure vectors are real. We define the
following two-forms:

L1
mn ¼

i
2
ðϵ†þγmnϵþ þ ϵ†−γmnϵ−Þ;

~L1
mn ¼

i
2
ðϵ†þγmnγ7ϵþ þ ϵ†−γmnγ7ϵ−Þ;

L3
mn ¼ ϵ†þγmnϵ−; ~L4

mn ¼ ϵTþγmnγ7ϵ−;

L6
mn ¼

1

2
ðϵTþγmnγ7ϵþ − ϵT−γmnγ7ϵ−Þ; ðA3Þ

where notation follows Ref. [41].
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1 Introduction

The idea of duality is very old, perhaps dating back to the (self) duality of the Maxwell

equations in the absence of charges and currents. The transformation of the fields describ-

ing a given dynamics into a different set of fields where particular phenomena become more

apparent, is a recurrent idea in Theoretical Physics. Indeed, dualities like those proposed

by Montonen and Olive [1], Seiberg and Witten [2, 3], Seiberg [4], or the U-duality web

in String Theory (see for example [5, 6]) are examples of this. While these dualities are

very hard to prove (hence initially conjectured), they have very far reaching consequences

in Physics: the phenomena that in one description are highly fluctuating and hence emi-

nently quantum mechanical, become semiclassical and characteristically weakly coupled in

the dual set of variables. The AdS/CFT duality [7–9] relating gauge theories and String

theories is a paradigmatic example of this.

Other dualities, like the Kramers-Wannier self duality of the two-dimensional Ising

model [10], bosonisation in two dimensions [11, 12] or T-duality in the String Theory

sigma model [13–15], are within the class of dualities that can be formally proven.

– 1 –
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In 1993, Quevedo and de la Ossa [16], following ideas in [15], proposed a non-Abelian

generalisation of T-duality, applicable to the Neveu-Schwarz sector of the string sigma

model. This was later complemented by Sfetsos and Thompson, who showed how to

transform the fields in the Ramond sector [17]. This important work opened the way

for further study involving new backgrounds and illuminating some geometrical and dual

field theoretic aspects of the non-Abelian T-duality [18–23]–[44]. These works have in turn

motivated the search for new classes of supersymetric AdS solutions that were overlooked

until recently [45]–[49].

Whilst the sigma-model procedure to calculate the non-Abelian T-dual of a given

background is apparently straightforward, many interesting subtleties related to global

aspects and invertibility of the duality arise. These subtle aspects were studied in the mid-

nineties but not completely resolved, in spite of many serious attempts [50–52]–[55]. Some

of such concrete problems are the (im)possibility of extending the non-Abelian duality

procedure to all orders in string perturbation theory and α′, and the determination of the

range of the coordinates and topology of the dual manifold. These issues cast doubts about

the ‘duality-character’ of the non-Abelian T-duality transformation.

One goal of this paper — elaborating on ideas introduced in [44] — is to get information

on some of the global problems mentioned above. The example we will consider here

involves a Type IIB background with an AdS4 factor, preserving N = 4 Supersymmetry.

A second goal of this paper — of interest in a broader context — will be to pro-

duce a new analytic solution to the Type IIB Supergravity equations of motion with an

AdS4 factor, that can be interpreted as an intersection of D3-D5-NS5 branes. Our ex-

ample illuminates what is surely a more general phenomenon, relating AdSp+1 geometries

generated by non-Abelian T-duality with Dp-D(p+ 2)-NS5 branes intersections — see for

example [45, 56, 57] for other recent studies of such configurations.

Furthermore, our case-study provides an interesting arena where the CFT interpreta-

tion of non-Abelian T-duality put forward in [44] can be tested. Indeed, using the results

in [58, 59] (see also [60]), which elaborate on certain limits of Type IIB Supergravity so-

lutions discussed in [61, 62], it is possible to associate a concrete CFT dual to our AdS4

solution. This will be a N = 4, d=3 conformal field theory, arising as the Renormalisation

Group fixed point of a T ρ̂ρ (SU(N)) quantum field theory that belongs to the general class

introduced by Gaiotto and Witten in [63]. These conformal field theories can be described

in terms of a linear quiver with bi-fundamental and fundamental matter or, equivalently,

in terms of Hanany-Witten set ups [64] containing D3, NS5 and D5 branes.

This work extends the ideas in [44] to the AdS4/CFT3 case. The paper [44] deals

with the singular background obtained by the application of non-Abelian T-duality on

AdS5×S5 and its interpretation as a Gaiotto-Maldacena type of geometry [65]. Using the

formal developments of [66, 67], a completion to the geometry generated by non-Abelian

duality was proposed, with the following relevant properties:

• It is a smooth background, except at isolated points where brane sources are located.

• The dual CFT is known explicitly.

– 2 –

Articles 99



J
H
E
P
1
1
(
2
0
1
6
)
1
3
3

• The coordinates of the completed geometry have a definite range, determined by

imposing the matching between observables calculated with the CFT and with the

geometrical description.

• The original non-Abelian T-dual background (that is, the geometry before comple-

tion) can be seen as a zoom-in on a patch of the completed manifold.

In this paper, we will use a combination of insights from three-dimensional N = 4 CFTs and

their dual geometries to obtain a similar understanding of an AdS4 Type IIB background,

obtained by the action of non-Abelian T-duality on the Type IIA reduction of AdS4 × S7.

An outline of this works goes as follows.

In section 2, we present our (new) background, analyse the amount of SUSY preserved

and study the structure of its singularities. The calculation of the associated charges

leads us to a proposal for the Hanany-Witten set-up [64]. In section 3 we discuss aspects

of N = 4 SCFTs in three dimensions. The associated backgrounds containing an AdS4

sub-manifold are also discussed. In sections 4 and 5, we embed our non-abelian T-dual

geometry into the formalism of [58] (ABEG hereafter). This leads us to a precise proposal

for the CFT dual to our background. We interpret our singular solution as embedded in

a more generic background (with the characteristics itemized above). Section 6 discusses

the subtle calculation of the free energy for the CFT defined by the non-abelian T-dual

geometry. Conclusions and some further directions to explore are collected in section 7.

Appendix A summarises the main properties of the Abelian T-dual limit of the non-Abelian

solution, of relevance for the interpretation of the free energy. Finally, appendix B contains

an interesting general relation between Abelian and non-Abelian T-duals.

2 The Type IIB N = 4 AdS4 solution

In this section we present the new type IIB N = 4 AdS4 background where our ideas

will be tested. It is generated from the maximally supersymmetric AdS4 × S7 solution in

M-theory (once reduced to Type IIA), through a non-Abelian T-duality transformation.

To begin we parametrise the M-theory solution such that we manifestly have two

three-spheres S3
1 and S3

2 , as

ds2
11d = ds2(AdS4) + 4L2

(
1

4
dµ2 + sin2

(µ
2

)
ds2

(
S3

1

)
+ cos2

(µ
2

)
ds2

(
S3

2

))
,

G4 =
3ρ2

L3
dt ∧ dx1 ∧ dx2 ∧ dρ =

3

L
Vol(AdS4), ds2(AdS4) =

ρ2

L2
dx2

1,2 + L2dρ
2

ρ2
,

(2.1)

where as usual for AdS4 Freund-Rubin solutions the AdS and internal radii obey the

relation RS7 = 2RAdS4 . We take the three-spheres to have unit radius, which means

µ ∈ [0, π). With the above parametrisation there is enough symmetry to reduce to IIA

within one of the three spheres and then perform a T-duality transformation on the other.

Here we will focus on performing an SU(2) non-Abelian T-duality on the residual SU(2).

We also give details of the Hopf fibre T-dual in appendix A.

– 3 –
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We want to reduce to Type IIA on the Hopf direction of S3
2 by parametrising it as

4ds(S3
2) = dθ2

2 + sin2 θ2dφ
2
2 + (dψ2 + cos θ2dφ2)2, (2.2)

with ψ2 ∈ [0, 4π]. Since some supersymmetry will be broken in the process, as the isometry

parametrised by ∂ψ2 defines a U(1) subgroup of the full SO(8) R-symmetry, we briefly study

the Killing spinor equations. To this end we introduce the manifestly U(1)ψ2 invariant

vielbein,

exi =
R

L
dxi (i = t, x1, x2), eR =

L

R
dR,

eµ = Ldµ, e1 = L sin
(µ

2

)
ω1, e2 = L sin

(µ
2

)
ω2, e3 = L sin

(µ
2

)
ω3.

eθ2 = L cos
(µ

2

)
dθ2, eφ2 = L cos

(µ
2

)
sin θ2dφ2, eψ2 = L cos

(µ
2

)
(dψ2 + cos θ2dφ2).

F4 =
3

L
etx1x2ρ, (2.3)

where

ω1 + iω2 = eiψ1 (idθ1 + sin θ1dφ1) , ω3 = dψ1 + cos θ1dφ1, (2.4)

which makes manifest an additional SU(2) isometry parametrised by S3
1 . The gravitino

variation on S7 is given in flat indices by1

∇aη +
1

4L
Γaγ̂η = 0, (2.5)

where γ̂ = ΓtΓx1Γx2Γρ. The number of preserved supercharges is determined by what

fraction of the initial 32 SUSYs are consistent with setting ∂ψ2η = 0 in the frame of

eq. (2.3). One can show by imposing that η is independent of ψ2 that one is lead to a

single projection that the Killing spinor must obey,

Γµθ2φ2ψ2η = −
(

cos
(µ

2

)
+ sin

(µ
2

)
γ̂Γµ

)
η, (2.6)

which breaks supersymmetry by half, leaving 16 real supercharges preserved by the re-

duction to Type IIA. In fact the projection also makes the Killing spinor independent of

(θ1, φ1, ψ1) in the frame of eq. (2.3) and independent of ψ1 in any frame in which the Hopf

isometry of S3
1 is manifest. These are precisely the conditions for supersymmetry to be

unbroken under SU(2) and U(1) T-duality transformations respectively [35, 68]. So 16

supercharges will remain in Type IIB after either of these duality transformations, enough

for this background to be dual to a three-dimensional N = 4 SCFT.

2.1 Reduction of ZZZk orbifold to IIA

Let us now proceed with the reduction on ψ2 with a slight generalisation. Let us reduce

the Zk orbifold of S3
2 . This has the effect of generating a stack of k D6 branes in Type IIA

while leaving the supersymmetry arguments unchanged.

1That the AdS4 directions solve is a standard exercise that we omit for brevity.
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Taking the Zk orbifold, amounts to sending S3
2 → S3

2/Zk in eq. (2.1) with,

4ds(S3
2/Zk) = dθ2

2 + sin2 θ2dφ
2
2 +

4

k2

(
dψ2 +

k

2
cos θ2dφ2

)2

, (2.7)

where ψ2 now has period 2π. Setting lp = α′ = gs = 1 leads to the type IIA solution,

ds2
IIA = e

2
3
φ0cos

(µ
2

)[
ds2(AdS4) + 4L2

(
1

4
dµ2 + sin2

(µ
2

)
ds2(S3

1) +
1

4
cos2

(µ
2

)
ds2(S2

2)

)]
,

F4 =
3

L
Vol(AdS4), F2 = −k

2
Vol(S2

2), e2Φ0 = e2φ0cos3
(µ

2

)
, e

2
3
φ0 =

2L

k
.

(2.8)

The reduction has generated a singularity at µ = π, but this has a physical interpretation,

it is due to the k D6 branes mentioned earlier. Indeed close to µ = π the metric has

the form,

ds2 ∼ e2φ0/3

2

[√
ν
(
ds2(AdS4) + 4L2ds2(S3

1)
)

+
L2

4
√
ν

(
dν2 + ν2ds2(S2

2)
)]
, eΦ ∼ eφ0ν3/4

2
√

2
,

(2.9)

for ν = (π − µ)2. We see that the reduction has generated D6 branes that extend along

AdS4, wrap S3
1 and are localised at µ = π. Of course this was to be expected as D6 brane

singularities are always generated anywhere the M-theory circle shrinks to zero size.

Before moving on, let us quote the D-brane charges,

ND2 =
1

2κ2
10T2

∫
?F4 =

2L6

kπ2
, QD6 =

1

2κ2
10T4

∫
S2
2

F2 = k. (2.10)

In our conventions 2κ2
10TDp = (2π)7−p. We thus set

L6 =
kπ2ND2

2
, (2.11)

to have integer D2 brane charge. We find the expected number of D6 branes.

2.2 The non-Abelian T-dual solution

We now present the solution that will be the main focus of this work, which is the result

of performing a non-Abelian T-dual transformation on the S3
1 of eq. (2.8). Using the rules

in [35], and parametrising the T-dual coordinates in terms of spherical coordinates (r, S2
1),

we generate the NS sector,

ds2
IIB = e

2
3
φ0 cos

(µ
2

)[
ds2(AdS4) + L2

(
dµ2 +

k2

L6 sin2 (µ)
dr2 + cos2

(µ
2

)
ds2(S2

2)

)]
+

L6

k2∆
r2 sin2

(µ
2

)
sin2 (µ) ds2(S2

1),

B2 =
L3

k∆
r3 sin

(µ
2

)
sin (µ) Vol(S2

1), e2Φ =
1

∆
e2φ0 cos3

(µ
2

)
, (2.12)
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where we have introduced

∆ =
L3

k3
sin
(µ

2

)
sin (µ)

(
k2r2 + L6 sin2

(µ
2

)
sin2 (µ)

)
. (2.13)

The solution is completed with the RR fluxes,

F3 =
1

4
Vol(S2

2) ∧ d
(
kr2 − L6

k

(
cos2(µ)− 3

)
cos(µ)

)
,

F5 = Vol(AdS4) ∧ d
(
L5

4k2
(cos(2µ)− 4 cos(µ))− 3

2L
r2

)
− L9

4k2∆
r2 sin3(µ) sin

(µ
2

)
Vol(S2

1) ∧Vol(S2
2) ∧

(
3r sin(µ)dµ+ 2 sin2

(µ
2

)
dr
)
.

(2.14)

We have explicitly checked that the background in eqs. (2.12)–(2.14) solves the Type IIB

Supergravity equations of motion, which is also implied by the result of the paper [24].

As is common to all backgrounds generated through an SU(2) non-Abelian T-duality

transformation, this solution incorporates a non-compact r-direction. Moreover, this solu-

tion has two singularities. The first lies at µ = π and is inherited from the stack of D6

branes in IIA. Indeed, close to µ = π one finds

ds2 ∼ e2φ0/3

2

[√
ν
(
ds2(AdS4) + L2ds2(S2

1)
)

+
L2

4
√
ν

(
dν2 + dr̃2 + ν2ds2(S2

2)
)]
, eΦ ∼ 2

√
ν

L3r̃
(2.15)

where we have defined r̃ = 2k/L2r and ν = (π − µ)2. This is almost the behaviour of

the smeared D5 stack one would generate under Hopf fibre T-duality along ψ1. The r-

dependence of the dilaton however modifies this. Recalling that the dilaton is determined

by a one loop effect in T-duality, which essentially amounts to imposing that e−2Φ Vol(MI)

(where MI is the submanifold where the duality is performed) is duality invariant, the

r factor has its origin in the different volumes of the original and non-Abelian T-dual

submanifolds, which are respectively S3 and R3. This is manifest when we parametrise the

volume of R3 in spherical coordinates (r, S2
1), where r is the radial direction. The second

singularity at µ = 0 is also unsurprising, since we have dualised on a sphere whose radius

vanishes at this point. We indeed obtain the non-Abelian T-dual analogue of smeared NS5

branes, since close to µ ∼ 0 we have,

ds2 ∼ e2φ0/3

[
ds2(AdS4) + L2ds2(S2

2) +
L2

4ν

(
dν2 + dr̃2 + ν2ds2(S2

1)
)]
, eΦ ∼ 8

L3
√
νr̃

(2.16)

where now we have defined ν = µ2 and once more it is the dependence of the dilaton on r

that makes this deviate from the conventional (
√
ν)−1 behaviour.

As previously discussed in other non-Abelian T-dual examples — see [27, 34, 36, 43],

the behaviour of the solution close to the location of the NS5-branes brings in interesting

information. Close to µ = 0 we have B2 = rVol(S2
1), with the metric spanned by (µ, S2

1)
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r

1
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Figure 1. b0 as a function of r.

becoming a singular cone, which defines a 2-cycle. This means that we must ensure that

on this cycle S2
1 , the quantity

b0 =
1

4π2

∫
S2
1

B2 (2.17)

satisfies b0 ∈ [0, 1] over the infinite range of r. This is achieved by performing a large gauge

transformation B2 → B2 − nπVol(S2
1) every time we cross r = nπ for n = 0, 1, 2, . . . so

that b0 is a piecewise linear periodic function as illustrated in figure 1. In this way r is

naturally partitioned into intervals of length π, with different brane content in each one of

them, as the study of the Page charges reveals. Indeed, there are two charges defined on

compact sub manifolds,

ND5 =
1

2κ2
10T5

∫
Σ1

F3 =
L6

kπ
, ND3 =

1

2κ2
10T3

∫
Σ2

(F5 −B2 ∧ F3) = nND5, (2.18)

where Σ1 = (µ, S2
2), Σ2 = (µ, S1

2 , S
2
2). Thus, we need to tune

L6 = kND5π. (2.19)

Notice that ND3 is not globally defined. Instead its value depends on which interval we

consider. In addition to this there are three charges that are defined on the non compact

sub-manifolds,

Σ̃1 = (r, S2
1), Σ̃2 = (r, S2

2), Σ̃3 = (r, S2
1 , S

2
2). (2.20)

We take the non compact r to be indicative of an infinite linear quiver, as shown for a

related AdS5 example in [44]. We calculate the charges in the interval r ∈ [nπ, (n + 1)π]

and find,

NNS5 =
1

2κ2
10TNS5

∫
S2
1

∫ (n+1)π

nπ
drH3 = 1,

kD5 = − 1

2κ2
10T5

∫
S2
2

∫ (n+1)π

nπ
dr F3 = (1 + 2n)

kπ

4
≡ (2n+ 1)k0. (2.21)

Notice that the parameter k, originally quantised in the Type IIA solution needs to be

re-quantised according to kπ = 4k0, after the non-Abelian T-duality. The same happens

to the size of the space L as shown in eq. (2.19).
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3⇡2⇡⇡ n⇡ (n+ 1)⇡

. . . . . . . . . . . ...

r

NS5 NS5
D5 D5

D3

D3

D3

D5 D5
NS5 NS5 NS5

.. .. 

Figure 2. (NS5, D3, D5) brane set-up. The number of D3-branes is given in ND5 units and that

of D5-branes in k0 units.

We can also compute

kD3 = − 1

2κ2
10T3

∫
S2
1×S2

2

∫ (n+1)π

nπ
dr (F5 −B2 ∧ F3) = (3n+ 2)

k0

3
,

but this last one will not be relevant in our analysis below. Notice that all these charges

are integer provided kπ
12 = 1

3k0 is an integer.

The previous analysis suggests a (NS5, D3, D5) brane set-up in which NS5-branes

wrapped on AdS4 × S2
2 are located at µ = 0, r = π, 2π, . . . , nπ, with n running to infinity,

and there are nND5 D3-branes, extended on (R1,2, r) stretched among the n’th and (n+1)’th

NS5’s. On top of this, (2n+ 1)k0 D5-branes, wrapped on AdS4×S2
1 and located at µ = π,

lie between the n’th and (n+ 1)’th NS5-branes. This brane set-up is depicted in figure 2.

After we recall some basic properties of 3d N = 4 CFTs and their holographic duals,

following [58, 63], we will make a concrete proposal for the field theory living on this brane

configuration.

3 Aspects of 3d N = 4 CFTs and their holographic duals

In this section we recall the basic aspects of the three dimensional N = 4 field theories

studied in [63] and of their holographic duals, derived in [58, 60]. We start with the field

theory description.

3.1 3d N = 4 CFTs

The study of the moduli space of N = 4 SYM in four dimensions defined on an interval

with SUSY preserving boundary conditions, lead Gaiotto and Witten [63] to introduce a

family of 3d quantum field theories — named T ρ̂ρ (SU(N)), characterised by an integer N

and two partitions of it, denoted ρ and ρ̂. From (N , ρ, ρ̂) it is possible to read the data

defining the UV of these theories, namely, the gauge group G = U(N1)× . . . .×U(Nk), the

bi-fundamental fields transforming in the (Ni, N̄i+1) representations, and the fundamental

matter, transforming under U(Mi) for each gauge group.
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0 1 2 3 4 5 6 7 8 9

D3 x x x x

D5 x x x x x x

NS55 x x x x x x

Table 1. Hanany-Witten brane set-up corresponding to the N = 4 3d theory.

Given a list of positive numbers [l1 ≥ l2 ≥ . . . . ≥ lp], one can define a partition ρ of

N by N =
∑p

r=1Mrlr. The numbers Mr, which indicate how many times the different

integers lr appear in the partition, give the ranks of the fundamental matter groups in

the field theory. Similarly, one can define a second partition ρ̂, consisting of the numbers

[l̂1 ≥ l̂2 ≥ . . . . ≥ l̂p̂], with multiplicities M̂r, such that N =
∑p̂

r=1 M̂r l̂r. From these

partitions the ranks of the different U(Ni) gauge groups are computed from the expressions,

Ni =
i∑

s=1

(ms − l̂s) , (3.1)

where ms denotes the number of terms that are equal or bigger than a given integer s in

the decomposition N =
∑p

r=1Mrlr.

Gaiotto and Witten [63] conjectured that the condition for these three-dimensional field

theories to flow to a conformal fixed point is (schematically) ρT ≥ ρ̂. More specifically, this

condition means that
i∑

s=1

ms ≥
i∑

s=1

l̂s ∀i = 1, . . . p̂ . (3.2)

Associating a Young tableau with rows of lengths [l1, . . . , lp] to the partition ρ and one with

columns of lengths [l̂1, . . . ., l̂p̂] to the partition ρ̂, this condition means that the number of

boxes in the first i-rows of the Young tableau associated to ρT must be larger or equal

than the corresponding number in the tableau associated to ρ̂. In those cases in which the

equality holds, that is,
i∑

s=1

ms =
i∑

s=1

l̂s for some i , (3.3)

some gauge groups have zero rank, and the quiver becomes disconnected.

The quantum theory defined by T ρ̂ρ (SU(N)) has Coulomb and Higgs branches of vacua,

while the theory defined by T ρρ̂ (SU(N)) has the same moduli space, but with the Coulomb

and Higgs vacua interchanged. Both theories are conjectured to flow to the same IR

fixed point, which is a reflection of mirror symmetry. The three-dimensional CFT that

appears at low energies is invariant under SO(2, 3)-reflecting the conformality in 3d, and

SO(4) ∼ SU(2)L × SU(2)R-reflecting the R-symmetry of N = 4 SUSY in 3d. This field

theory can be nicely realised through a Hanany-Witten [64] set-up consisting of p D5 branes

and p̂ NS5 branes with D3 branes stretched between them. This brane set-up is shown in

table 1.

The x3-direction on which D3 branes stretch is of finite size, thus giving rise at long

distances to a three-dimensional QFT on [0, 1, 2]. The SU(2)L × SU(2)R R-symmetry is
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associated with rotations in the [4, 5, 6] and [7, 8, 9] directions. In turn, the l1 ≥ l2 ≥ . . . . ≥
lp and l̂1 ≥ l̂2 ≥ . . . . ≥ l̂p̂ numbers that define the partitions (ρ, ρ̂) are respectively, the

linking numbers associated to the p D5 and p̂ NS5 branes. These are defined by

lD5,a = la = −na +RNS5
a , a = 0, . . . ., p,

l̂NS5,b = l̂b = nb + LD5
b b = 1, . . . ., p̂,

where na is the net number of D3 branes ending on the given five brane (number of D3 on

the right — number of D3 on the left). In turn, RNS5
a is the number of NS5 branes to the

right of a given D5 brane, while LD5
b is the number of D5 branes to the left of a given NS5

brane. The multiplicities of each linking number, Mr, M̂r, are thus the number of branes

in the corresponding stack of D5 or NS5 branes.

3.2 The ABEG dual geometries

Following the formulation initiated in [61, 62], the authors of [58, 60] proposed that the

supergravity solutions associated to the three dimensional N = 4 CFTs that we just

described are fibrations of AdS4 × S2 × S2 over a Riemann surface Σ2. We will refer to

these geometries as ABEG geometries for brevity. These solutions have manifest SO(2, 3)×
SU(2)L×SU(2)R symmetry, and can be completely determined from two harmonic functions

h1(z, z̄), h2(z, z̄), defined on the Riemann surface Σ2. From the functions h1, h2, the

background and fluxes are given by,

ds2 = λ2ds2(AdS4) + λ2
1ds

2(S2
1) + λ2

2ds
2(S2

2) + ds2(Σ2),

H3 = d(b1) ∧Vol(S2
1), F3 = d(b2) ∧Vol(S2

2), ds2(Σ2) = 4ρ̃2|dz|2

F5 = 4(1 + ?)f ∧Vol(S2
1) ∧Vol(S2

2), (3.4)

where ρ̃2, λ, λ1, λ2, b1, b2 and the dilaton eΦ are real functions and f denotes a 1-form on

Σ2, explicitly written below. These functions can be written in a compact form from h1,

h2 using,

W = ∂zh1∂z̄h2 + ∂z̄h1∂zh2, X = i(∂zh1∂z̄h2 − ∂z̄h1∂zh2)

N1 = 2h1h2|∂zh1|2 − h2
1W, N2 = 2h1h2|∂zh2|2 − h2

2W, (3.5)

as,

ρ̃2 =

√
N2|W |
h1h2

, λ2 = 2

√
N2

|W |
, λ2

1 = 2eΦh2
1

√
|W |
N1

, λ2
2 = 2h2

2

√
|W |
N2

,

b1 = 2hD2 + 2h2
1h2

X

N1
, b2 = −2hD1 + 2h1h

2
2

X

N2
, e2Φ =

N2

N1
. (3.6)

Here hD1 , h
D
2 are the harmonic duals of h1, h2, defined such that hD1 + ih1 and h2− ihD2 are

holomorphic functions. Notice that we are working in string frame, hence some factors of

the dilaton differ from [60, 62], which use Einstein frame. Finally, the 1-form f is given by,

f = 2 Im

([
3i (h1∂zh2 − h2∂zh1) + ∂z

(
h1h2

X

W

)]
λ2

1λ
2
2

λ4
dz

)
. (3.7)
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x
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Figure 3. 5-branes distribution along the strip, parameterised by z = x+ iy.

It was shown in [58] that the two harmonic functions h1, h2 that encode the super-

gravity solution as shown above, can be determined from the (D5, NS5, D3) brane set-up

associated to the T ρ̂ρ (SU(N)) theory. Defining the sets of numbers [Na
5 , δa] and [N̂ b

5 , δ̂b],

denoting respectively the number of branes at each stack and the position of this stack,

for D5 and NS5 branes, and taking Σ2 as the strip defined by −∞ < Re[z] < ∞ and

0 ≤ Im[z] ≤ π
2 ,2 the h1, h2 functions are given by,

h1 = −1

4

p∑
a=1

Na
5 log tanh

(
iπ2 + δa − z

2

)
+ cc, h2 = −1

4

p̂∑
b=1

N̂ b
5 log tanh

(
z − δ̂b

2

)
+ cc.

(3.8)

These expressions exhibit logarithmic singularities at the locations of the stacks of D5-

branes, at z = δa + iπ/2, for h1, and at the locations of the NS5-branes z = δ̂b, for h2. The

brane distribution is depicted in figure 3. The Laplace problem that these functions solve

must be complemented by conditions on the boundaries of the Riemann surface [61, 62],

h1

∣∣
Im[z]=0

= ∂⊥h2

∣∣
Im[z]=0

= 0, h2

∣∣
Im[z]=π

2
= ∂⊥h1

∣∣
Im[z]=π

2
= 0, (3.9)

where ∂⊥ = ∂z − ∂z̄, which the h1 and h2 in eq. (3.8) satisfy.

From the expressions for h1, h2 in eq. (3.8), the fluxes in eq. (3.4) can be calculated

using eqs. (3.5) and (3.6). The associated charges are defined as,

Na
5 =

1

2κ2
10TD5

∫
I×S2

2

F3, N̂ b
5 =

1

2κ2
10TNS5

∫
Î×S2

1

H3, (3.10)

where the 3-cycles, defined in [58], consist of a shrinking sphere times an interval I or Î,

that semi-circles the position of the singularity at δa or δ̂b. As we discussed, (Na
5 , N̂

b
5)

should be identified with the multiplicities (Mr, M̂r) in the two partitions ρ, ρ̂.

Similarly, it is possible to define two Page charges associated to D3 branes, one being

the S-dual of the other:

Na
3 =

1

2κ2
10TD3

∫
I×S2

1×S2
2

[F5−B2∧F3], N̂ b
3 =

1

2κ2
10TD3

∫
Î×S2

1×S2
2

[F5 +C2∧H3]. (3.11)

These charges are well defined whenever the potential B2 or C2 entering in their expression

is well-defined, that is, away from the positions where the NS5 or D5 branes are located.

2This choice of strip is consistent for linear quivers (see [58, 59]).
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From these and the previous charges, the linking numbers associated to the D5 and NS5

branes can be determined as [58],

la = −N
a
3

Na
5

=
2

π

p̂∑
b=1

N̂ b
5 arctan(eδ̂b−δa), l̂b =

N̂ b
3

N̂ b
5

=
2

π

p∑
a=1

Na
5 arctan(eδ̂b−δa). (3.12)

As expected, they satisfy

N =

p̂∑
b=1

N̂ b
5 l̂b =

p∑
a=1

Na
5 la. (3.13)

Finally, in [69] a special limit of the general expressions for h1 and h2 given in eq. (3.8)

was considered. In this limit, the NS5-branes and D5-branes located at the two boundaries

of the strip, Im z = 0, Im z = π/2, are positioned at infinite values of Re z. This limit

will be useful when we discuss the realisation of the non-Abelian T-dual solution as an

ABEG geometry. Specifically, it was shown in [69] that if δa →∞ and δ̂b → −∞ one can

approximate eq. (3.8) by,

h1 = sin y

p∑
a=1

Na
5 e

x−δa + . . . if x < δ1,

= sin y

p∑
a=i

Na
5 e

x−δa + . . . if δi−1 < x < δi,

h2 = cos y

p̂∑
b̂=1

N̂ b
5e
δ̂b−x + . . . if x > δ̂1,

= cos y

p̂∑
b̂=i

N̂ b
5e
δ̂b−x + . . . if δ̂i−1 > x > δ̂i, (3.14)

where the strip is parameterised by z = x + iy. Notice that these expressions still satisfy

the boundary conditions in eq. (3.9).

4 The Type IIB N = 4 AdS4 solution and CFT

After we have discussed the basic ingredients of 3d N = 4 CFTs and their duals, we can

go back to our brane configuration, discussed at the end of section 2, and make a concrete

proposal for the CFT associated to the brane set-up depicted in figure 2.

Restricting the r direction to lie between zero and r = (n + 1)π, we have a total

number of n+ 1 NS5-branes (see figure 4). In order to have a field theory that flows to a

non-trivial infrared fixed point (see below) we need to add (n+1)ND5 D3-branes ending on

the (n+ 1)’th NS5-brane from the right. This is achieved inserting a stack of (n+ 1)ND5

D5-branes to the right of the (n+ 1)’th NS5-brane, each one connected to this NS5-brane

by a D3-brane. In turn, this is equivalent up to a Hanany-Witten move [64] to just taking

the n’th stack of D5-branes with (2n + 1)k0 + (n + 1)ND5 branes. This field theoretical

– 12 –

Articles 109



J
H
E
P
1
1
(
2
0
1
6
)
1
3
3

3⇡2⇡⇡ n⇡ (n+ 1)⇡

. . . . . . . . ...

r

NS5 NS5
D5 D5

D3

D3
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.. .. 
.. D5..

Figure 4. Completed (NS5, D3, D5) brane set-up.

completion of the quiver has the geometric counterpart of making finite the range of the

r-coordinate.

Thus, in the notation of ABEG, we have p = n+1 and the multiplicity of D5 branes is,

Na
5 = (2a+ 1)k0 , a = 0, . . . , n− 1 Nn

5 = (2n+ 1)k0 + (n+ 1)ND5 . (4.1)

We can now compute the linking numbers associated to the five branes in the Hanany-

Witten set-up. These provide an invariant way of encoding the brane configuration, since

they do not change under Hanany-Witten moves. The linking numbers associated to the

D5-branes are given by ,

la = −na +RNS5
a , (4.2)

where na denotes the net number of D3-branes ending on the a’th stack of D5-branes and

RNS5
a the number of NS5-branes located at its right. For our brane set-up we find,

la = n+ 1− a for a = 0, 1, . . . , n. (4.3)

From here the total number of D3-branes N , reads

N =
n∑
a=0

laN
a
5 =

n∑
a=0

(n+ 1− a)(2a+ 1)k0 + (n+ 1)ND5

=
k0

6
(n+ 1)(n+ 2)(2n+ 3) +ND5(n+ 1). (4.4)

Alternatively, we can compute N using the NS5-branes stacks. In this case the linking

numbers are computed from,

l̂b = nb + LD5
b , (4.5)

where nb denotes once more the net number of D3-branes ending on the b’th NS5-brane,

and LD5
b denotes the number of D5-branes to the left of the b’th NS5-brane. We find that,

l̂b = ND5 + k0b
2, b = 1, . . . , n+ 1. (4.6)

Once can easily check that

N =

n+1∑
b=1

l̂bN
b
5 =

n+1∑
b=1

l̂b =
k0

6
(n+ 1)(n+ 2)(2n+ 3) +ND5(n+ 1) , (4.7)
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as in eq. (4.4). Thus, the ρ, ρ̂ partitions associated to the brane configuration in figure 4 read

ρ : N = 1 + . . .+ 1︸ ︷︷ ︸
(2n+1)k0+(n+1)ND5

+ 2 + . . .+ 2︸ ︷︷ ︸
(2n−1)k0

+ . . .+ (n+ 1) + . . .+ (n+ 1)︸ ︷︷ ︸
k0

, (4.8)

and

ρ̂ : N = ND5 + (n+ 1)2k0︸ ︷︷ ︸
1

+ND5 + n2k0︸ ︷︷ ︸
1

+ . . .+ND5 + k0︸ ︷︷ ︸
1

. (4.9)

These two partitions define the T ρ̂ρ (SU(N)) field theory associated to our brane set-up.

Following now the work of ABEG [58] we can read from eq. (4.8) the number of terms, ml,

that are equal or bigger than a given integer l,

m1 = (n+ 1)ND5 + (n+ 1)2k0 , m2 = n2k0 , . . . , mn = 4k0, mn+1 = k0.

(4.10)

From these, the condition to have a field theory that flows to a non-trivial infrared fixed

point, as was conjectured in [63], is,

ρT ≥ ρ̂⇐⇒
i∑

s=1

ms ≥
i∑

s=1

l̂s ∀i = 1, . . . , n+ 1, (4.11)

where for this to hold the l̂i must be ordered such that l̂1 ≥ l̂2 · · · ≥ l̂i. We will use this

notation in the rest of this section. In the present case we have,

i∑
s=1

ms = (n+ 1)ND5 +
n+1∑

q=n−i+2

q2k0 , (4.12)

which is strictly larger than

i∑
s=1

l̂s = iND5 +
n+1∑

q=n−i+2

q2k0, (4.13)

for i = 1, . . . , n, while
n+1∑
s=1

ms =

n+1∑
s=1

l̂s. (4.14)

The last condition is consistent with the fact that there are k0 D5-branes in the [0, π]

interval that are disconnected from the rest of the branes, thus leading to a quiver that

breaks into two disconnected components. We can also check that, consistently with our

brane set-up in figure 4, the ranks of the gauge groups are given by

Ni =

i∑
s=1

(ms − l̂s) = (n+ 1− i)ND5 , (4.15)

and the last gauge group is empty, in agreement with the fact that there are k0 free

hypermultiplets associated to the decoupled k0 D5-branes. Each of these gauge groups has

associated Mj hypermultiplets in the fundamental, with Mj given by,

ρ : N = 1 + . . .+ 1︸ ︷︷ ︸
M1

+ 2 + . . .+ 2︸ ︷︷ ︸
M2

+ . . .+ (n+ 1) + . . .+ (n+ 1)︸ ︷︷ ︸
Mn+1

. (4.16)
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Figure 5. Quiver associated to the (NS5, D3, D5) brane set-up in figure 4.

These can be read from eq. (4.8) in our case. The resulting quiver is represented in figure 5,

and we can see that it is fully consistent with the brane configuration in figure 4. We can

also check explicitly that

Mi +Ni−1 +Ni+1 > 2Ni, (4.17)

a condition for the quiver to flow towards a superconformal field theory in the infrared [63].

In summary, we have seen that ending the Hanany-Witten set-up in figure 2 and

completing it with flavour branes as in figure 4, lead us to a concrete proposal for a quiver

describing a T ρ̂ρ (SU(N)) theory. The charges of the non-Abelian T-dual solution calculated

in eq. (2.21) were instrumental in identifying the quiver and its completion. We will

now show that the metric and other fields in the non-Abelian T-dual background are also

consistent with those associated to the quiver of figure 4. The non-Abelian T-dual geometry

will arise as a zooming-in on a particular region of the ABEG [58] solution associated to

the T ρ̂ρ (SU(N)) field theory.

5 The Type IIB N = 4 AdS4 solution as a ABEG geometry

Since the solution that we generated in section 2 preserves N = 4 SUSY, contains an AdS4

factor and has SO(4) isometry, it is natural to expect that it should fit within the formalism

described in section 3.2. Below, we will prove this. We start by redefining,

σ = − cosµ, β2 =
k2

L6
. (5.1)

For the non-Abelian T-dual solution in eqs. (2.12)–(2.14), we can calculate,

λ2
1 =

r2

2β2∆
(1−σ)(1+σ)2, λ2

2 =
(1−σ)3/2

√
2β

, λ2 =

√
2

β

√
1−σ, 1

ρ̃2
= 2
√

2β
√

1−σ(1+σ),

b1 =
r3

√
2β∆

√
1−σ(1+σ)−nπ, b2 = c0+

k

4

(
r2+

σ(σ2−3)

β2

)
, z = σ+iβr,

e2Φ =
2
√

2

k2β∆
(1−σ)3/2, ∆ =

1√
2β3

√
1−σ(1+σ)

(
β2r2+

(1−σ)(1+σ)2

2

)
, (5.2)
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where d(c0) = 0 and the nπ comes from the contribution to B2 of n large gauge transfor-

mations. From this we find that the functions in eqs. (3.5)–(3.6) read,

N1 =
rk3∆

64
√

2−2σβ3
, N2 =

kr(1−σ)

32β4
, W = − kr

16β2
, X = − k

16β3
(1+σ), (5.3)

h1 =
kr(1+σ)

4β
, h2 =

1−σ
2β

, hD1 = −k(1−(2+σ)σ)+(4c0+kr2)β2

8β2
, hD2 =

1

2
(r−nπ).

Notice that the functions h1, h2 are harmonic. As established in [62], this implies that the

equations of motion of Type IIB Supergravity are satisfied. Also, note that the definition

of hD2 in each nπ < r < (n + 1)π cell implies it is a piecewise periodic function such

that 0 < hD2 < π/2.

Thus, we have shown that the solution generated by non-Abelian T-duality —

eqs. (2.12)–(2.14), fits within the class of solutions discussed in eqs. (3.4)–(3.7). It is

worth stressing nevertheless that it does not satisfy the boundary conditions in eq. (3.9) —

nor does it show any of the isolated singularities than can be associated to the positions

(δ, δ̂), of the D5 and NS5 branes. This suggests that the solution generated by non-Abelian

T-duality could be thought of as a limit of the generic solutions in eqs. (3.4)–(3.7), along

the lines of eqs. (3.14). We next study this in detail.

Let us start by computing the positions of the D5 and NS5 brane stacks associated to

our brane configuration in figure 4. As explained in [58] and summarised in section 3.2,

these positions can be computed from,

la =
2

π

p̂∑
b=1

N̂ b
5 arctan(eδ̂b−δa) l̂b =

2

π

p∑
a=1

Na
5 arctan(eδ̂b−δa).

These equations are simply solved by

eδ̂b−δa = tan

(
π

2

la l̂b
N

)
. (5.4)

Using eqs. (4.3) and (4.6) this gives for our brane set-up

δ̂b − δa = log
[
tan

( π

2N
(n+ 1− a)(ND5 + k0b

2)
)]
, (5.5)

with N given by eq. (4.4).

Recalling that we read the charges of our brane configuration from the supergravity

solution, we expect to find a sensible solution to eq. (5.5) in the supergravity limit ND5 →
∞. Taking this limit we find,

δ̂b − δa = log

[
tan

(
π

2

(
1− a

n+ 1

))]
(5.6)

which shows that in this limit all stacks of NS5-branes can be approximately taken at the

same position δ̂. Equivalently, we can write eq. (5.6) as

δa − δ̂ = log

[
tan

(
πa

2(n+ 1)

)]
. (5.7)
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Figure 6. Positions of D5 and NS5 branes in the supergravity limit. In this limit the set-up

becomes symmetric around δ̂ = δ(n+1)/2, with the exception of the detached stack of D5-branes

at δ0 = −∞.

From here we see that the first stack of (detached) k0 D5-branes lies strictly at δ0−δ̂ = −∞,

while the rest of stacks lie symmetrically at both sides of the NS5-branes, given that

log

[
tan

(
πc

2(n+ 1)

)]
= − log

[
tan

(
πa

2(n+ 1)

)]
for c = n+ 1− a. (5.8)

Thus,

δ1 − δ̂ = δ̂ − δn, δ2 − δ̂ = δ̂ − δn−1, . . . , δ̂ = δ(n+1)/2. (5.9)

This brane distribution is depicted in figure 6. Let us now obtain the h1, h2 functions

associated to this configuration, following [58, 59].

In the supergravity limit the main contribution to h1 in eq. (3.8) comes from the n’th

stack, given that the number of branes in this stack goes with ND5 as shown by eq. (4.1).

We can then approximate,

h1 ∼ −
1

4
Nn

5 log tanh

(
iπ2 + δn − z

2

)
+ cc. (5.10)

For h2 we have in turn

h2 ∼ −
1

4
(n+ 1) log tanh

(
z − δ̂

2

)
+ cc. (5.11)

Choosing

δn = −δ̂ = −1

2
log

[
tan

(
π

2(n+ 1)

)]
, (5.12)

the n’th stack of D5-branes lies approximately at plus infinity for large n while the stack

of NS5-branes lies approximately at minus infinity. For finite x we can then use the

approximate expressions for h1, h2 in eq. (3.14) to produce,

h1 ∼ sin y Nn
5 e

x−δn ∼ sin y ND5

√
π(n+ 1)

2
ex,

h2 ∼ cos y (n+ 1) eδ̂−x ∼ cos y

√
π(n+ 1)

2
e−x, (5.13)
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where we have approximated δn = −δ̂ ∼ −1
2 log

[(
π

2(n+1)

)]
for large n. Close to y = 0,

x = 0 we have,

h1 ∼ y ND5

√
π(n+ 1)

2
(1 + x),

h2 ∼
√
π(n+ 1)

2
(1− x). (5.14)

Let us now compare these expressions with those of our non-Abelian T-dual solution.

Taking the functions h1, h2 for this solution from eq. (5.3),

h1 =
kr(1 + σ)

4β
,

h2 =
1− σ

2β
, (5.15)

we find that they agree with eq. (5.14) if we identify x = σ and

1

2β
∼
√
π(n+ 1)

2
, r ∼ 2

k
ND5 y. (5.16)

Taking into account that β = k/L3, and ND5 = L6/(πk), these are equivalent to

ND5 ∼ 2k(n+ 1) , r ∼ 4(n+ 1)y. (5.17)

The output of this analysis is that the non-Abelian T-dual solution comes out when zoom-

ing into the region x = y = 0 of the ABEG solution associated to the brane set-up in

section 4. Further, we have shown that in order to match these solutions n must go to

infinity as ND5/k, which is consistent with the fact that n is unbounded in the non-Abelian

T-dual solution. Note however that this limit should be taken directly in equation (5.5)

for consistency of the previous analysis. We have checked numerically that the matching

between the non-Abelian T-dual solution and the ABEG geometry still holds in this limit

in the region x ∼ 0, y ∼ 0. In this matching we must have σ ∼ x, r ∼ 4(n + 1)y. There-

fore, σ, which in the non-Abelian T-dual solution ranges in [−1, 1], must be small. The

coordinate r in turn, may cover a finite region depending on how the y → 0 limit is taken

in the expression above, which is unspecified in our analysis.

The previous agreement suggests that we may see the ABEG solution as a completion

of the non-Abelian T-dual geometry, that: i) Extends it to −∞ < σ < ∞, such that

the singularities in σ = ±1 are moved to ±∞, and thus resolved, and ii) Delimits r to a

bounded region. This is shown pictorially in figure 7. It is interesting that this completion

makes explicit the ideas in [44], where a completion of the non-Abelian T-dual of AdS5×S5

as a superposition of Maldacena-Nunez geometries was outlined.

6 Free energy

The authors of reference [69] computed the free energy of some specific examples of

T ρ̂ρ (SU(N)) field theories, both directly in the field theory as well as using holography.

– 18 –
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Figure 7. The ABEG set-up in the limit in which the NS5-branes are placed at −∞ and the D5-

branes at +∞ (left). The non-Abelian T-dual set-up, with σ ∈ [−1, 1], r ∈ [0,+∞), with smeared

NS5-branes at σ = −1 and smeared D5-branes at σ = +1 (right). The matching of the solutions

occurs locally around x, y ∼ 0. The completion of the non-Abelian T-dual geometry is achieved

extending σ to ±∞ and bounding r to an interval. In this completion the NS5-branes are localised

at −∞ and the D5-branes at +∞.

This free energy was shown to exhibit a 1
2N

2 logN behaviour at leading order. Further, it

was argued that this value should provide an upper bound to the free energy of any, more

general, T ρ̂ρ (SU(N)) field theory.

In this section we compute the free energy associated to the non-Abelian T-dual solu-

tion and compare it to that of the completed ABEG geometry. We show that, as expected,

the free energies do not agree, consistently with the fact that the non-Abelian T-dual ge-

ometry approximates the ABEG geometry only in a small patch. On the contrary, this

calculation shows explicitly how the completion of the non-Abelian T-dual geometry leads

to a sensible value for the free energy of the dual T ρ̂ρ (SU(N)) field theory that is in conso-

nance with previous results in the literature and satisfies the bound found in [69].

We will use the conventions in [69]. In this reference the free energy is computed from

Seff =
1

24π5
Vol6, (6.1)

where Vol6 is the volume of the six dimensional internal space, which can be calculated

from the functions h1, h2, defined in the 2d manifold Σ2 as,

Vol6 = 32(4π)2

∫
Σ
d2x(−W )h1h2. (6.2)

We first use this expression to compute the free energy associated to the non-Abelian

T-dual solution. In this case we find,

h1h2 =
k

8β2
r(1− σ2) , W = − kr

16β2
, (6.3)

and

Vol6 = 32(4π)2 k2

27β4

∫
Σ
r2(1− σ2)βdrdσ. (6.4)

Here we have used that the differential area of the strip is dΣ = βdrdσ. Integrating

r ∈ [0, (n+ 1)π] and σ ∈ [−1, 1] we find

Seff =
π3/2

9

√
kN

3/2
D5 (n+ 1)3. (6.5)
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As in previous non-Abelian T-duals of AdS backgrounds, this free energy exhibits the same

behaviour, in this case as
√
kN3/2, of the original AdS background, multiplied by a power

of (n+ 1) coming from the NS5-branes.

Let us now analyse the “Abelian T-dual limit” of this expression. This limit was first

discussed in [44] at the level of the central charges. It was shown that the central charge

(and the free energy) of the SU(2) non-Abelian T-dual of AdS5×S5 and that of its Abelian

T-dual counterpart3 exactly match if r is taken in a r ∈ [nπ, (n+1)π] interval and n is sent

to infinity. In this limit both metrics do in fact fully agree. We have presented a detailed

analysis of this limit in appendix A for the present AdS4 non-Abelian T-dual solution and

its Abelian T-dual counterpart (see also appendix B). Borrowing the result for the free

energy of the Abelian T-dual solution we can show that it fully agrees with the free energy

of the non-Abelian solution for r ∈ [nπ, (n+ 1)π] and n→∞.

Indeed, integrating r ∈ [nπ, (n + 1)π], σ ∈ [−1, 1] in eq. (6.4) and taking the n → ∞
limit, we find

Seff =
π3/2

3

√
kN

3/2
D5 n

2. (6.6)

Using now that ND3 = nND5 for the non-Abelian solution and that in the large n limit

kD5 = nkπ/2, as implied by the second expression in eq. (2.21), eq. (6.6) can be rewritten as

Seff =

√
2π

3

√
kD5N

3/2
D3 . (6.7)

One can see that this result matches exactly the free energy of the Abelian T-dual back-

ground, given by eq. (A.12). As stressed in [44], this calculation shows that non-Abelian

T-duality in an interval of length π corrects the Abelian T-duality calculation by 1/n terms.

In our present set-up this provides a non-trivial check of the validity of expression (6.4).

Let us now compare the free energy of the full non-Abelian solution, given by eq. (6.5),

to the free energy computed from the completed ABEG geometry. As shown in [69] the ap-

proximated expressions given by (3.14) are enough to capture the leading order behaviour.

Using then these approximated expressions for h1, h2 for our particular ABEG geometry,

given by eqs. (5.13), we can write h1h2 ∼ 1
2 sin 2yND5(n+ 1)2e−2δn and

W =
1

4

∂2

∂y2
(h1h2) = −h1h2. (6.8)

The internal volume then reads,

Vol6 = 16 (4π)2N2
D5(n+ 1)4e−4δn

∫ π
2

0
dy sin2 2y

∫ δn

δ̂
dx, (6.9)

which gives to leading order,

Vol6 = 16π5N2
D5(n+ 1)2 log (n+ 1), (6.10)

3Namely, the result of T-dualising the original AdS5 × S5 background along the Hopf fibre of the S3 in

the internal space.

– 20 –

Articles 117



J
H
E
P
1
1
(
2
0
1
6
)
1
3
3

and finally,

Seff = N2
D5(n+ 1)2 log (n+ 1). (6.11)

We thus see that the free energy of the T ρ̂ρ (N) theory associated to our configuration

exhibits a similar logarithmic behaviour to that of the examples discussed in [69]. As in

those examples, the logarithm comes holographically from the size of the configuration.

In our case it depends however on the number of NS5-branes, rather than on the number

of D3-branes. Interestingly, taking into account the relation between N and n, given by

eq. (4.4), the free energy given by eq. (6.11) satisfies the 1
2N

2 logN bound suggested in [69]

for the free energy of general T ρ̂ρ (N) field theories. This is to our knowledge the first check

in the literature of the conjecture in [69].

We would like to note that for our particular T ρ̂ρ (N) theory, there is no field theoretical

computation in the literature, along the lines of [70, 71], with which we could compare our

holographic result. Indeed, the scaling limit taken in the field theory computation in [69],

given by

Na
5 = N1−κaγa ; la = Nκaλa, (6.12)

with 0 ≤ κa < 1 and
∑p

a=1 γaλa = 1, is not fulfilled by our configuration, for which only

κn = 0 is well-defined. The reason we avoid this scaling is that there is a further N

dependence in the number p that appears in N =
∑p

a=1N
a
5 la, as compared to the situation

considered in [69]. It would be interesting to extend the field theory calculation in [69] to

cover the present, more general, set-up, and check if the result matches the holographic

computation.

As we have previously mentioned, we can see quite explicitly from the calculation of

the free energy how the non-Abelian T-dual solution is completed by the ABEG geometry.

Indeed, taking into account the different parametrisation of the strip in the non-Abelian

T-dual solution, dΣ = βdrdσ, and in the ABEG solution, dΣ = dxdy, and doing the

completions ∫ 1

−1
(1− σ2)dσ →

∫ δn

δ̂
exe−xdx, (6.13)

and

β

∫ (n+1)π

0
r2dr → 2(n+ 1)2

∫ π/2

0
sin2 2ydy, (6.14)

which extend in a particular way the relations σ ∼ x, r ∼ 4(n + 1)y, valid in the x, y ∼ 0

region, we can recover exactly the free energy associated to the ABEG solution, given by

eq. (6.11), from that of the non-Abelian T-dual solution. In this completion the logarithm

is associated to the infinite extension of the configuration in the x direction, which is what

allows us to send the singularities in σ = ±1 to ±∞. Note that the completion changes

as well, and quite dramatically, the
√
kN

3/2
D5 (n+ 1)3 scaling of the free energy of the non-

Abelian T-dual solution into the N2
D5(n + 1)2 scaling associated to the ABEG geometry.

Interpreting the behaviour of the free energy of AdS backgrounds generated through non-

Abelian T-duality has remained an interesting open problem in the non-Abelian duality

literature. Indeed, in all examples analysed so far the free energy of the non-Abelian T-dual

was simply that of the original background corrected by a factor of (n+ 1) to some power,
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associated to the NS5-branes. One was thus led to interpret that non-Abelian T-duality

was not changing too much the field theory. Instead, the detailed calculation done in the

present example shows that the completion needed to correctly define the dual CFT can

change this behaviour quite significantly.

To summarise, we have shown that expressions (6.13), (6.14) inform us about the

precise way in which the non-Abelian T-dual solution must be completed in order to describe

holographically a T ρ̂ρ (SU(N)) theory:

• Expression (6.13) shows that the interval σ ∈ [−1, 1] must be extended to σ ∈
(−∞,∞). The two singularities at σ = ∓1 are then moved to infinity such that a

perfectly smooth background remains.

• Expression (6.14) informs us about how precisely the non-compact direction of the

non-Abelian T-dual solution must be bounded.

Our AdS4 example thus provides a new AdS background in which the CFT dual can be

used to define the geometry, in complete analogy with the AdS5 case discussed in [44]. It

also shows that the completion can significantly change the scaling of the free energy, and

thus the CFT. This may shed some light on the possible interpretation of the behaviour of

the free energy under non-Abelian T-duality.

7 Summary and conclusions

Let us start by summarising the contents of this paper. Then we will present some ideas

for future work and comment on open problems that our results suggest.

We started by constructing a new solution to the Type IIB equations of motion. This

new background consists of an AdS4 factor and two spheres S2
1 , S

2
2 , fibered on a Riemann

surface Σ(z, z̄). A dilaton, NS three form and Ramond three and five forms complete

it. The system preserves sixteen supercharges and is obtained acting with non-Abelian

T-duality on the dimensional reduction of AdS4 × S7 to Type IIA. Both the original type

IIA and its type IIB counterpart are singular. An important achievement of this paper

is to understand the way of completing the geometry so that the only remaining isolated

singularities are associated with brane sources. Global aspects of the geometry have also

been understood thanks to this completion.

The procedure that we used to achieve these results can be summarised as follows. The

study of the Page charges in section 2, suggested the brane distribution and Hanany-Witten

set-up. The isometries of the background indicated the global symmetries of the dual field

theory and the same goes for the amount of preserved SUSY. These data constrained our

system in an important way, and suggested the way in which the Hanany-Witten set up,

that in principle is unbounded, can be completed (hence closed) by the addition of flavour

branes. This completion, shown explicitly comparing figure 4 with figure 2, is needed in

order to define the partitions from which the T ρ̂ρ (SU(N)) dual theory can be read. The

position (in theory space) where this completion takes place is arbitrary and determines

the parameters of the dual field theory. From here, the knowledge of the associated field
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theory, that in this case flows to a conformal fixed point, is constraining enough to allow

us to write a precise completed Type IIB background in terms of a couple of holomorphic

functions defined on a Riemann surface. This background describes an intersection of D3-

D5-NS5 branes, and is smooth, except at the isolated positions of the five brane sources.

Then, we discussed how a particular zoom-in on a region of the completed background

gives place to the original Type IIB solution obtained by non-Abelian T-duality. Finally,

our calculation of the free energy showed explicitly that this completion produces a sensible

result for the free energy of the associated T ρ̂ρ (SU(N)) field theory, satisfying the upper

bound 1
2N

2 logN found in [69]. This result suggests that there could be a scaling in the

field theory side that reproduces our gravitational result.

A couple of points are crucial in the previous summary. On the one hand we have

assumed that the fluxes capture faithfully the brane distribution (except, of course, for the

completion with flavour branes). This has allowed us to suggest a Hanany-Witten set-up

and to calculate (after completing it) the linking numbers that select the particular CFT.

On the other hand, the fact that we are using field theory knowledge to smooth out a

supergravity background is quite original and key to our procedure.

Interestingly, our approach has also allowed us to find out about global properties, in

particular about the range of the r-coordinate (which is one of the long-standing problems

of the whole non-Abelian T-duality formalism). It also gives a clean way of resolving or

interpreting singularities in terms of sources. This is particularly nice since the presence of

these sources is a consequence of the flavour symmetry on the field theory side, that also

reflects in the completed quiver. A circle of ideas closes nicely.

What remains to be done (for this particular system and more generally)?

The proposed picture of intersecting Dp-D(p+ 2)-NS5 branes associated with an AdSp+1

background should be tested in detail. For this, a more complete case-by-case study is

needed. Examples with different dimensionality might reveal new subtleties, that in the

present study or in that of [44] do not show. In particular, it is clear that backgrounds

with AdS6 and AdS3 factors should be studied following the ideas presented here. Progress

should be possible in cases with less SUSY and smaller isometry groups.

In relation to the present AdS4/CFT3 case, it would be interesting to investigate

Wilson loops, vortex operators [72] and other subtle CFT aspects — see for example [73–

75], to understand, in particular, how our solutions capture these fine-points. The study

of the spectrum of glueballs and mesons using our backgrounds (both the one obtained via

non-Abelian T-duality and the completed one) is also of potential interest to learn about the

nature of the duality. It would also be interesting to understand the geometric realisation

of the decoupled flavour group in the quiver associated to our completed geometry

More generally, it would be very interesting to find out a precise answer for what is

the effect of a non-Abelian T-duality transformation at the CFT level. In our example

we started with a background dual to a CFT with one node and adjoint matter, to which

we associated (after a non-Abelian T-duality transformation) a quiver containing a large

number of colour and flavour groups. But, how precisely did we go from one quiver to

the other? Is an ‘unhiggsing’ at work, or is the non-Abelian T-duality a genuine non-field
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theoretical operation? For a quite particular case of non-Abelian T-duality transformation,

some progress was recently reported in [76].

Finally, it would be very nice if the ideas developed in this work could be used to

answer deep questions about the nature of non-Abelian T-duality in String theory. For

example, its invertibility, or the character of the genus and α′-expansions. We have given

some evidence that the AdS/CFT correspondence can be very useful also in this regard.
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A The Abelian T-dual limit

In this appendix we summarise the key properties of the N = 4 AdS4 type IIB solution that

is generated from the IIA solution in equation (2.8) by T-duality along the Hopf direction of

S3
1 . This solution, dual to a circular quiver, was discussed at length in [59]. Here we recall

its more relevant properties in the notation used in this paper. We show that it emerges

as the r → ∞ limit of the non-Abelian T-dual solution in section 2 (see appendix B). In

this limit the free energies of both solutions also agree, as shown in section 6.

A.1 The solution

The Abelian T-dual of the IIA solution in equation (2.8) along the Hopf direction of S3
1

reads:

ds2
IIB = e

2
3
φ0 cos

(µ
2

)[
ds2(AdS4) + L2

(
dµ2 +

k2

L6 sin2 (µ)
dr2 + cos2

(µ
2

)
ds2(S2

2)

)]
+
L3

k
sin
(µ

2

)
sin(µ)ds2(S2

1), B2 = cos θ1dφ1 ∧ dr, e2Φ =
e4φ0/3

L2 tan2
(µ

2

) .
(A.1)

Since we dualise on the Hopf fibre 0 < ψ1 < 4π, we have 0 < ψ̃1 < π.4 To ease notation

we choose to label ψ̃1 = r, as we have a similar coordinate in the non-Abelian T-dual case

4Recall that the periodicity of the Abelian T-dual coordinate is fixed by the condition
∫
dψ1∧dψ̃1 =(2π)2.
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of section 2, here though we stress that it is compact. Additionally this background is

supported by the gauge invariant RR fluxes

F3 =
k

2
dr ∧Vol(S2

2), F5 = − 3

L
dr ∧Vol(AdS4) +

3L6

4k
sin3(µ)dµ ∧Vol(S1

2) ∧Vol(S2
2).

(A.2)

As observed in [43, 44] for other AdS backgrounds (see appendix B for a general analysis),

this solution arises in the r → ∞ limit of the non-Abelian T-dual solution derived in

section 2. This is straightforward for the metric and the NS-NS 2-form,5 while the dilatons

differ by an r2 factor that accounts for the different integration measures in the partition

functions of the Abelian and non-Abelian T-dual σ-models, as explained in [44]. The RR

sector, even if the fields are different (see appendix B), yields to the same quantised charges,

as we show below. Finally, in order to match both solutions globally, r must live in an

interval of length π, r ∈ [nπ, (n + 1)π], with n → ∞. It is indeed in this limit in which

there is precise agreement between the corresponding free energies.

The Abelian T-dual solution is also N = 4 supersymmetric, as discussed in section 2,

and has two singularities. The first singularity at µ = π is inherited from the stack of D6

branes in IIA. Indeed, one finds that for µ ∼ π

ds2 ∼ e2φ0/3

2

[√
ν
(
ds2(AdS4)+L2ds2(S2

1)
)
+
L2

4
√
ν

(
dr̃2+dν2+ν2ds2(S2

2)
)]
, eΦ ∼ e2φ0/3

2L

√
ν

(A.3)

which is the metric close to flat space smeared D5’s, where we have defined r̃ =

4e−2φ0/3/L2r and ν = (π − µ)2. The second singularity at µ = 0 is caused by NS5 branes

localised there, wrapping S2
2 and smeared along r. This is a generic result of T-dualising

on the Hopf fibre of a 3-sphere with vanishing radius. Close to µ = 0 one finds the metric

(now ν = µ2)

ds2 ∼ e2φ0/3

[
ds2(AdS4) + L2ds2(S2

2) +
L2

4ν

(
dr̃2 + dν2 + ν2ds2(S2

1)
)]
, eΦ ∼ 2e2φ0/3

L
√
ν
,

(A.4)

as expected.

The Page charges of this solution are given by

ND3 =
1

2κ2
10T3

∫
Ξ2

(F5 −B2 ∧ F3) =
ND2

2
,

kD5 =
1

2κ2
10T5

∫
F3 =

k

2
,

NNS5 =
1

2κ2
10TNS5

∫
(r,S2

1)
H3 = 1, (A.5)

where Ξ1 = (r, S1
2 , S

2
2), Ξ2 = (µ, S1

2 , S
2
2) and we keep L defined as it was for IIA in

eq (2.11). The factors of 2 in kD5, ND3 originate from the different periodicities of the

original and T-dual variables. They are usually absorbed through a redefinition of Newton’s

5Note that B2 arises in the gauge B2 = rVol(S2
1) in the Abelian T-dual.
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1

2
NS5

ND3 D3

k0

kD5 D5

Figure 8. Brane set-up for the Abelian T-dual of the IIA reduction of AdS4 × S7/(Zk × Zk′). At

each interval there are ND3 D3-branes stretched between the NS5-branes and kD5 = k/2 transverse

D5-branes.

constant. Comparing these charges with those of the non-Abelian T-dual solution, given

in expressions (2.18), (2.21), we find that

NNATD
D3 = nπNATD

D3 , kNATD
D5 = nπkATD

D5 . (A.6)

This same rescaling was found in [44] in the matching between the Abelian and non-Abelian

T-dual AdS5 spaces studied in that paper. As discussed there, the nπ factor can again be

safely absorbed through a redefinition of Newton’s constant. We give further details of the

general relationship between T-dual and non-Abelian T-dual solutions in appendix B.

A simple generalisation is to allow 0 < r < k′π, which is equivalent to taking the T-

dual of the IIA reduction of the AdS4×S7/(Zk×Zk′) orbifold. In that case NNS5 = k′. The

solution described in [59] corresponds to this situation. Its CFT dual consists of a circular

quiver associated to a set of ND3 D3-branes, with ND3 as in (A.5), stretched between k′

NS5-branes, as illustrated in figure 8. These D3-branes are thus winding D3-branes. At

each interval of length π there are also kD5 D5-branes. The field theory associated to this

brane configuration was studied in [59] and denoted as C ρ̂ρ (SU(N), L), with the positive

integer L refering to the number of winding D3-branes. These theories degenerate to the

T ρ̂ρ (SU(N)) theories of [63] when L = 0. In the next subsection we illustrate the connection

between the solution in [59] for k′ = 1 and the Abelian T-dual solution under discussion.

The value k′ = 1 corresponds to the limiting case of ND3 D3-branes stretched between two

NS5-branes that are identified.

A.2 Connection with ABEG geometries

As in the case of the non-Abelian T-dual solution, we expect that the Abelian T-dual,

which also preserves N = 4 SUSY, contains an AdS4 factor and has SO(4) isometry, fits

within the formalism described in section 3.2. Indeed, from eqs. (A.1), (A.2) we can read
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off the values

λ2
1 =

√
(1− σ)(1 + σ)√

2β
λ2

2 =
(1− σ)3/2

√
2β

λ2 =

√
2
√

1− σ
β

,
1

ρ̃2
= 2
√

2β
√

1− σ(1 + σ),

b1 = r − nπ, b2 =
k

2
r + c0, z = σ + iβr, e2Φ = 4

1− σ
k2(1 + σ)

, (A.7)

where d(c0) = 0 and β and σ are defined as in section 5. In terms of the classification we

find that the T-dual solution is given by

N1 =
k3

128β4
(1 + σ), N2 =

k

32β4
(1− σ), W = − k

16β2
, X = 0, (A.8)

h1 =
k

4β
(1 + σ), h2 =

1

2β
(1− σ), hD1 = −1

2

(
c0 +

k

2
r

)
, hD2 =

1

2
r.

As discussed in [59], this solution does not fit however within the Ansatz of [58].

Clearly, even if there are NS5 and D5 branes located at σ = ∓1, which could be taken

as boundaries of an infinite strip, the branes are smeared in r by construction, and h1,

h2 do not exhibit logarithmic singularities at the locations of the branes. The authors

of [58] showed in [59] how to solve this problem. They considered a distribution (δa, δ̂b) of

5-branes that is repeated infinitely-many times along the strip with a period 2t, such that

δa+p−δa = δ̂b+p̂− δ̂b = 2t, where p and p̂ are, correspondingly, the total numbers of D5 and

NS5-branes stacks. The resulting h1, h2 are, by construction, periodic under z → z + 2t.

This allows for the identification of points separated by the period 2t, thus turning the strip

into an annulus (and thus the linear quiver into a circular quiver) in the eiπz/t plane, with

NS5 (D5) brane stacks along the inner (outer) boundaries. The smearing of the branes

comes out as a result of taking the limit t → 0 combined with a far-from-the-boundaries

approximation. h1 and h2 become then independent of r and non-singular.

The introduction of the period 2t on the gravity side induces the winding D3-branes on

the dual quiver, in a way that we specify below. These branes do not end on the 5-branes

and therefore do not contribute to the linking numbers. The corresponding circular quiver

is then characterised by two partitions ρ and ρ̂, together with the number of winding D3-

branes. The t → 0 limit that yields the Abelian T-dual solution corresponds to a large

number of these winding D3’s, which are then identified with the ND3 in (A.5). In this

approximation the number of D3-branes ending on 5-branes is negligible, and the brane

picture depicted in figure 8 arises.6

For the sake of transparency, let us finally show that the IIB NS-sector derived in [59]

for k′ = 1 NS5-branes matches our Abelian T-dual solution.7 The Einstein frame metric

and dilaton in [59] are

ds2
IIB = R2g(y)1/4

[
ds2
AdS4

+ yds2
S2
1

+ (1− y)ds2
S2
2

]
+R2g(y)−3/4

[
4t2

π4
dx2 + dy2

]
,

e2φ′ =
k′

k

√
1− y
y

, (A.9)

6Indeed, in this approximation the period 2t is simply related to ND3 as ND3 = (π2kk′)/(32t2).
7Up to a scaling factor and an S-duality transformation, given e.g. in (6.1) of [59] for c = b = 0 and

a = d = −1. Note also that [59] uses a non-standard form of the dilaton, φ′ ≡ Φ/2.
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where the AdS4 space is taken to be of unit radius, R4 = π4kk′/t2 and g(y) = y(1− y). If

expressed in string frame by multiplying with eφ
′

= eΦ/2 and allowing for the coordinate

change

y = sin2
(µ

2

)
, x =

1

4
r , (A.10)

the solution in equation (A.1) is reproduced for k′ = 1, for which r ∈ [0, π]. It can also be

easily checked that with this coordinate change the RR-sector in (A.2) corresponds to the

one of [59], up to a gauge transformation.

A.3 Free energy

Using the results of the previous subsection, we can compute the free energy of the Abelian

T-dual solution from W , h1 and h2 using expressions (6.1) and (6.2) (see [59]). Taking the

differential area of the strip d2x = βdrdσ and integrating in r ∈ [0, π], σ ∈ [−1, 1], we find

Seff =
k2

3π2β3
, (A.11)

and, using the conserved charges in (A.5),

Seff =

√
2π

3

√
kD5N

3/2
D3 . (A.12)

It can easily be checked that this is the free energy of the IIA reduction of the AdS4×S7/Zk
orbifold, with ND2 → ND3 and k → kD5. It is shown in the main text that it agrees with the

free energy of the non-Abelian T-dual solution in the r ∈ [nπ, (n+1)π] interval and n→∞.

B Relating Abelian and non-Abelian T-duality

In the previous appendix we discussed the relationship between the Abelian and non-

Abelian T-dual AdS4 spaces studied in this paper. In this appendix we complete this

analysis and elucidate a general relationship between the geometries generated by acting

on a round S3 with Hopf fibre T-duality and SU(2) non-Abelian T-duality.

Consider a type II supergravity solution with global SO(4) isometry and NS sector

that can be written as

ds2 = ds2(M7) + 4e2Cds2(S3), B = 0, eΦ = eΦ0 (B.1)

where x are coordinates on M7 only. Non-Abelian T-duality acting on such solutions was

considered at length in [18–23]. It will be useful to parametrise the 3-sphere in two different

ways, making manifest the two dualisation isometries

4ds2(S3
U(1)) = dθ2+sin2 θdφ2+(dψ+cos θdφ)2, 4ds2(S3

SU(2)) =
(
ω2

1 + ω2
2 + ω3

3

)
, (B.2)

where ωi are SU(2) left invariant 1-forms. The first of these is suitable for T-duality on ψ

which, following [35], results in the dual NS sector

ds2
ATD = ds2(M7) + e−2Cdr2 + e2Cds2(S2),

BATD
2 = rVol(S2), e−ΦATD = eC−Φ0 , (B.3)
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where we have performed a gauge transformation on B2 to put it in this form, and S2 is

the unit norm 2-sphere spanned by θ, φ. The second sphere parametrisation is suitable for

SU(2) non-Abelian T-duality and leads to the dual NS sector

ds2
NATD = ds2(M7) + e−2Cdr2 +

e2Cr2

r2 + e4C
ds2(S2),

BNATD
2 =

r3

r2 + e4C
Vol(S2), e−ΦNATD =

√
r2 + e4CeC−Φ0 .

(B.4)

Comparing eqs (B.3) and (B.4) one finds they obey the relation

lim
r→∞

ds2
NATD = ds2

ATD, lim
r→∞

BNATD
2 = BATD

2 , lim
r→∞

e−ΦNATD = re−ΦATD . (B.5)

This has been observed in the previous appendix and before, for instance in [44], but what

has not been addressed is whether such a relation holds also for the RR fluxes. We now

address this by considering the massive IIA fluxes

F0 = m,

F2 = G2,

F4 = G4 + 8G1 ∧Vol(S3), (B.6)

however the following statements also hold when transforming from type IIB to IIA. Per-

forming T-duality on the Hopf fibre as before leads to the dual fluxes

FATD
1 = −mdr,
FATD

3 = −dr ∧G2 −G1 ∧Vol(S2)

FATD
5 = −dr ∧G4 + e3C ?7 G4 ∧Vol(S2) (B.7)

while performing non-Abelian T-duality on the whole S3 leads to

FNATD
1 = −G1−mrdr,

FNATD
3 = e3C?7G4−rdr∧G2−

r3

r2+e4C
G1∧Vol(S2)+

mr2e4C

r2+e4C
dr∧Vol(S2)

FNATD
5 = −rdr∧G4+

r2e4C

r2+e4C
dr∧G2∧Vol(S2)+

r3e3C

r2+e4C
?7G4∧Vol(S2)−e3C?7G2. (B.8)

Comparing eqs (B.7) and (B.8), one sees that there is indeed a relation between the flux

polyforms, namely

∂r( lim
r→∞

FNATD) = FATD, (B.9)

which e−ΦNATD clearly also obeys. Notice that we can dispense with the derivative by

weighting the flux polyform by the dilaton, namely

lim
r→∞

eΦNATDFNATD = eΦATDFATD . (B.10)
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That this holds is actually not so surprising. As shown in [17, 68], under T-duality the

fluxes transform in the combination eΦF . Specifically the fluxes and MW Killing spinors

are transformed by the same matrix Ω as

ε1 = ε01,

ε2 = Ωε02,

eΦF = eΦ0
F 0Ω−1, (B.11)

where 0 hat denotes the seed solution. For SU(2) non-Abelian T-duality performed on a

round 3-sphere there exists a frame in which

ΩNATD =
1√

r2 + e4C
(Γr12 + rΓr) (B.12)

where the flat directions 1, 2 span e2CS2 in the non-Abelian T-dual. Clearly

lim
r→∞

ΩNATD = lim
r→∞

(
ΩNATD

)−1
= Γr (B.13)

which we recognise as ΩATD. This means that

lim
r→∞

eΦ0
F 0(ΩNATD)−1 = eΦ0

F 0(ΩATD)−1 (B.14)

and so eq (B.10) just reconciles this with the final expression in eq (B.11).

To conclude, we have observed that the Hopf fibre T-dual is related to the non-Abelian

T-dual as

lim
r→∞


ds2

B2

eΦF

ε1,2


NATD

=


ds2

B2

eΦF

ε1,2


ATD

(B.15)

while the dilaton is related as

lim
r→∞

e−ΦNATD = re−ΦATD . (B.16)

As discussed below eq (2.15), it is easy to understand the r appearing in the dilaton at

the level of the string frame supergravity actions, where this factor precisely cancels the

change in the volume of the T-dual submanifold in the NS sector. In the RR sector, it is the

combination eΦF that absorbs the volume change. The r → ∞ limit of the non-Abelian

T-dual thus reproduces the Abelian T-dual.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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1 Introduction

Non-Abelian T-duality [1], the generalization of the Abelian T-duality symmetry of String

Theory to non-Abelian isometry groups, is a transformation between world-sheet field

theories known since the nineties. Its extension to all orders in gs and α′ remains however

a technically-hard open problem [2–8]. As a result, non-Abelian T-duality does not stand

as a String Theory duality symmetry, as its Abelian counterpart does.

In the paper [9], Sfetsos and Thompson reignited the interest in this transformation

by highlighting its potential powerful applications as a solution generating technique in

supergravity. An interesting synergy between Holography (the Maldacena conjecture) [10]

and non-Abelian T-duality was also pointed out. This connection was further exploited

in [11]–[37]. These works have widely applied non-Abelian T-duality to generate new

AdS backgrounds of relevance in different contexts. While some of the new solutions

avoid previously existing classifications [11, 28, 31, 32], which has led to generalizations of

existing families [38–41], some others provide the only known explicit solutions belonging

to a given family [32, 33], which can be used to test certain conjectures, such as 3d-3d

duality [42, 43]. Some of these works also put forward some ideas to define the associated

holographic duals. Nevertheless, these initial attempts always encountered some technical

or conceptual puzzle, rendering these proposals only partially satisfactory.

It was in the papers [44–46], where the field theoretical interpretation of non-Abelian

T-duality (in the context of Holography) was first addressed in detail. One outcome of these

works is that non-Abelian T-duality changes the dual field theory. In other words, that new

AdS backgrounds generated through non-Abelian T-duality have dual CFTs different from

those dual to the original backgrounds. This is possible because, contrary to its Abelian

counterpart, non-Abelian T-duality has not been proven to be a String Theory symmetry.

The results in [44–46] open up an exciting new way to generate new quantum field

theories in the context of Holography. In these examples the dual CFT arises in the low

energy limit of a given Dp-NS5 brane intersection. This points to an interesting relation

between AdS non-Abelian T-duals and M5-branes, that is confirmed by the n3 scaling of

the central charges.

Reversing the logic, the understanding of the field theoretical realization of non-Abelian

T-duality brings in a surprising new way (using Holography!) to extract global information

about the new backgrounds. Indeed, as discussed in the various papers [2–8], one of the

long-standing open problems of non-Abelian T-duality is that it fails in determining global

aspects of the dual background.

The idea proposed in [44] and further elaborated in [45, 46], relies on using the dual field

theory to globally define (or complete) the background obtained by non-Abelian T-duality.

In this way the Sfetsos-Thompson solution [9], constructed acting with non-Abelian T-

duality on the AdS5×S5 background, was completed and understood as a superposition of

Maldacena-Núñez solutions [47], dual to a four dimensional CFT. This provides a global

definition of the background and also smoothes out its singularity. This idea was also put

to work explicitly in [45] in the context of N = 4 AdS4 solutions. In this case the non-

Abelian T-dual solution was shown to arise as a patch of a geometry discussed in [48–51],
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dual to the renormalization fixed point of a T ρ̂ρ (SU(N)) quiver field theory, belonging to

the general class introduced by Gaiotto and Witten in [52].

In the two examples discussed in [44, 45] the non-Abelian T-dual solution arose as the

result of zooming-in on a particular region of a completed and well-defined background.

Remarkably, this process of zooming-in has recently been identified more precisely as a

Penrose limit of a well-known solution. The particular example studied in the paper [46],

a background with isometries R× SO(3)× SO(6), was shown to be the Penrose limit of a

given Superstar solution [53]. This provides an explicit realization of the ideas in [44] that

is clearly applicable in more generality.

In this paper we follow the methods in [44] to propose a CFT interpretation for the

N = 1 AdS5 background obtained in [12, 13, 28], by acting with non-Abelian T-duality on

a subspace of the Klebanov-Witten solution [54]. We show that, similarly to the examples

in [44, 45], the dual CFT is given by a linear quiver with gauge groups of increasing rank.

The dynamics of this quiver is shown to emerge from a D4-NS5-NS5’ brane construction

that generalizes the Type IIA brane set-ups discussed by Bah and Bobev in [55], realizing

N = 1 linear quivers built out of N = 1 and N = 2 vector multiplets that flow to

interacting fixed points in the infrared. These quivers can be thought of as N = 1 twisted

compactifications of the six-dimensional (2, 0) theory on a punctured sphere, thus providing

a generalization to N = 1 of the N = 2 CFTs discussed in [56].

The results in this paper suggest that the non-Abelian T-dual solution under consid-

eration could provide the first explicit gravity dual to an ordinary N = 1 linear quiver

associated to a D4-NS5 brane intersection [55]. In this construction, the N = 2 SUSY

D4-NS5 brane set-up associated to the Sfetsos-Thompson solution (see [44]) is reduced to

N = 1 SUSY through the addition of extra orthogonal NS5-branes, as in [55]. The quiver

that we propose does not involve the TN theories introduced by Gaiotto [57], and is in

contrast with the classes of N = 1 CFTs constructed in [58–61]. We support our proposal

with the computation of the central charge associated to the quiver, which is shown to

match exactly the holographic result. We also clarify a puzzle posed in [12, 13], where the

non-Abelian T-dual background was treated as a solution in the general class constructed

in [58, 59], involving the TN theories, whose corresponding central charge was however in

disagreement with the holographic result.

Before describing the plan of this paper, let us put the present work in a wider frame-

work, discussing in some more detail the general ideas behind it.

1.1 General framework and organization of this paper

In the papers [12, 13], the non-Abelian T-dual of the Klebanov-Witten background was

constructed. There, it was loosely suggested that the dual field theory could have some

relation to theN = 1 version of Gaiotto’s CFTs. Indeed, following the ideas in [60], the non-

Abelian T-dual of the Klebanov-Witten solution could be thought of as a mass deformation

of the non-Abelian T-dual of AdS5 × S5/Z2, as indicated in the following diagram,

AdS5 × S5/Z2

mass
��

// NATD of AdS5 × S5/Z2

mass
��

AdS5 × T 1,1 // NATD of AdS5 × T 1,1.
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Nevertheless, there were many unknowns and not-understood subtle issues when the pa-

pers [12, 13] were written. To begin with, the dual CFT to the non-Abelian T-dual of

AdS5 × S5 was not known, the holographic central charge of such background was not

expressed in a way facilitating the comparison with the CFT result, the important role

played by large gauge transformations [19, 25] had not been identified, etc. In hindsight,

the papers [12, 13] did open an interesting line of research, but left various uncertainties

and loose ends.

This line of investigations evolved to culminate in the works [44–46], that gave a

precise dual field theoretical description of different backgrounds obtained by non-Abelian

T-duality. This led to a field-theory-inspired completion or regularization of the non-

Abelian T-dual backgrounds. Different checks of this proposal have been performed. Most

notably, the central charge is a quantity that nicely matches the field theory calculation

with the holographic computation in the completed (regulated) background.

In this paper we will apply the ideas of [44–46] and the field theory methods of [55] to

the non-Abelian T-dual of the Klebanov-Witten background. A summary of our results is:

• We perform a study of the background and its quantized charges, and deduce the

Hanany-Witten [62] brane set-up, in terms of D4 branes and two types of five-branes

NS5 and NS5’.

• We calculate the holographic central charge. This requires a regularization of the

background, particularly in one of its coordinates. The regularization we adopt here

is a hard-cutoff. Whilst geometrically unsatisfactory, previous experience in [44]

shows that this leads to sensible results, easy to compare with a field theoretical

calculation.

• Based on the brane set-up, we propose a precise linear quiver field theory. This, we

conjecture, is dual to the regulated non-Abelian T-dual background. We check that

the quiver is at a strongly coupled fixed point by calculating the beta functions and

R-symmetry anomalies.

• The quiver that we propose is a generalization of those studied in [55]. It can be

thought of as a mass deformation of the N = 2 quiver dual to the non-Abelian T-

dual of AdS5×S5/Z2, that is constructed following the ideas in [44]. It is the presence

of a flavor group in the CFT that regulates the space generated by non-Abelian T-

duality.

• We calculate the field theoretical central charge applying the methods in [55]. We find

precise agreement with the central charge computed holographically for the regulated

non-Abelian T-dual solution.

In more detail, the present paper is organized as follows. In section 2, we summarize the

main properties of the solution constructed in [12, 13]. We perform a detailed study of the

quantized charges, with special attention to the role played by large gauge transformations.

Our analysis suggests a D4, NS5, NS5’ brane set-up associated to the solution, similar to
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that associated to the Abelian T-dual of Klebanov-Witten, studied in [63, 64]. In section 3

we summarize the brane set-up and N = 1 linear quivers of [55], which we use in section 4

for the proposal of a linear quiver that, we conjecture, is dual to the regulated version of

the non-Abelian T-dual solution of AdS5×T 1,1. We provide support for our proposal with

the detailed computation of the (field theoretical) central charge which we show to be in

full agreement with the (regulated) holographic result. We give an interpretation for the

field theory dual to our background in terms of a mass deformation of the N = 2 CFT

associated to the non-Abelian T-dual of AdS5 × S5/Z2. This suggests the geometrically

sensible way of completing our background. Section 5 contains a discussion where we

further elaborate on the relation between our proposal and previous results in [12, 13]. We

also resolve a puzzle raised there regarding the relation between the non-Abelian T-dual

solution and the solutions in [59]. Concluding remarks and future research directions are

presented in section 6. Detailed appendices complement our presentation. In appendix A,

we explicitly calculate the differential forms showing that the non-Abelian T-dual solution

fits in the classification of [65], for N = 1 SUSY spaces with an AdS5-factor. Appendix B

studies in detail the relation between the non-Abelian T-dual solution and its (Abelian)

T-dual counterpart. Finally in appendix C we present some field theory results relevant

for the analysis in section 4.

2 The non-Abelian T-dual of the Klebanov-Witten solution

In this section we summarize the Type IIA supergravity solution obtained after a non-

Abelian T-duality transformation acts on the T 1,1 of the Klebanov-Witten background [54].

This solution was first derived in [12, 13]. It was later studied in [28] where a more suitable

set of coordinates was used. More general solutions in Type IIA were constructed in [26]

as non-Abelian T-duals of AdS5 × Y p,q Sasaki-Einstein geometries. Following our paper,

the study of their dual CFTs appears to be a natural next step to investigate.

We start by introducing our conventions for the background and by summarizing the

calculation of the holographic central charge of the AdS5 × T 1,1 solution.

2.1 The AdS5 × T 1,1 solution

The metric is given by,

ds2 = ds2
AdS5

+ L2 ds2
T 1,1 , (2.1)

ds2
AdS5

=
r2

L2
dx2

1,3 +
L2

r2
dr2,

ds2
T 1,1 = λ2

1(σ2
1̂

+ σ2
2̂
) + λ2

2(σ2
1 + σ2

2) + λ2(σ3 + cos θ1 dφ1)2,

where λ2 = 1
9 , λ

2
1 = λ2

2 = 1
6 and

σ1̂ = sin θ1 dφ1, σ2̂ = dθ1,

σ1 = cosψ sin θ2 dφ2 − sinψ dθ2, σ2 = sinψ sin θ2 dφ2 + cosψ dθ2, (2.2)

σ3 = dψ + cos θ2 dφ2.
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The background includes a constant dilaton and a self-dual RR five-form,

F5 =
4

gs L

[
Vol
(
AdS5

)
− L5 Vol

(
T 1,1

)]
. (2.3)

The associated charge is given by

1

2κ2
10 TD3

∫
T 1,1

F5 = N3 . (2.4)

Using that 2κ2
10 TDp = (2π)7−p gs α

′ 7−p
2 this leads to a quantization of the size of the space,

L4 =
27

4
π g2

s α
′2N3 . (2.5)

To calculate the holographic central charge of this background, we use the formalism

developed in [28, 66]. Indeed, for a generic background and dilaton of the form,

ds2 = a(r, θi)
[
dx2

1,d + b(r) dr2
]

+ gij(r, θ
i) dθi dθj , Φ(r, θi), (2.6)

we define the quantities V̂int, Ĥ as,

V̂int =

∫
dθi
√

det[gij ] e−4Φ ad , Ĥ = V̂ 2
int . (2.7)

The holographic central charge for the (d+ 1)-dimensional QFT is calculated as,

c = π dd
bd/2Ĥ

2d+1
2

GN,10

(
Ĥ ′
)d , GN,10 = 8π6g2

s α
′4. (2.8)

Using these expressions for the background in eq. (2.1), we have

a =
r2

L2
, b =

L4

r4
, d = 3,

√
e−4Φ det[gij ] a3 = g−2

s L2r3λλ4
1 sin θ1 sin θ2 . (2.9)

After some algebra, we obtain the well-known result [67],

cKW = π
L8

108π3g4
sα
′4 =

27

64
N2

3 . (2.10)

We now study the action of non-Abelian T-duality on one of the SU(2) isometries

displayed by the background in eq. (2.1). We use the notation and conventions in [28].

2.2 The non-Abelian T-dual solution

The NS-NS sector of the non-Abelian T-dual solution constructed in [12, 13, 28] is composed

of a metric, a NS-NS two-form and a dilaton. Using the variables in [28], the metric reads,1

dŝ2 =
r2

L2
dx2

1,3 +
L2

r2
dr2 + L2λ2

1

(
dθ2

1 + sin2 θ1dφ
2
1

)
+
L2

Q

[
λ4

1

(
cosχ dρ− ρ sinχ dχ

)2
+ λ2λ2

1

(
sinχ dρ+ ρ cosχ dχ

)2
+ λ2λ2

1 ρ
2 sin2 χ

(
dξ + cos θ1dφ1

)2
+ ρ2dρ2

]
.

(2.11)

1Henceforth we use the rescaling ρ −→ L2

α′ ρ so that all factors in the internal metric scale with L2. We

also substitute λ2 = λ1 for convenience.
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The NS two-form is,

B2 =
L2ρ2 sinχ

2Q

[(
λ2 − λ2

1

)
sin 2χ dξ ∧ dρ+ 2P ρ dξ ∧ dχ

]
− L2λ2 cos θ1

Q

[(
λ4

1 + ρ2
)

cosχdρ ∧ dφ1 − λ4
1 ρ sinχ dχ ∧ dφ1

]
,

(2.12)

and the dilaton is given by,2

e−2Φ̂ =
L6 Q

g2
s α
′3 . (2.13)

For convenience we have defined the following functions,

Q = λ2λ4
1 + ρ2P , P = λ2 cos2 χ+ λ2

1 sin2 χ = λ2
1 +

(
λ2 − λ2

1

)
cos2 χ . (2.14)

This solution is supported by a set of RR fluxes which read,

F2 = −4L4λλ4
1

gs α′3/2
sin θ1 dθ1 ∧ dφ1 ,

F4 = − 2L6λλ4
1

gs α′3/2Q
ρ2 sinχ sin θ1 dθ1 ∧ dφ1 ∧

[(
λ2 − λ2

1

)
sin 2χdξ ∧ dρ+ 2P ρ dξ ∧ dχ

]
= B2 ∧ F2 . (2.15)

The higher rank RR fields which are related to the previous ones through Fp =
(
−1
)[p/2]

?

F10−p read,

F6 = − 4L3

gs α′3/2
ρVolAdS5 ∧ dρ ,

F8 = − 4L5λ2λ4
1

gs α′3/2Q
ρ2 sinχVolAdS5 ∧ dρ ∧ dχ ∧

(
dξ + cos θ1 dφ1

)
.

(2.16)

The associated RR potentials C1 and C3, defined through the formulas F2 = dC1 and

F4 = dC3 −H3 ∧ C1, are given by,

C1 =
4L4 λλ4

1

gs α′3/2
cos θ1 dφ1 ,

C3 =
2L6 λλ4

1

gs α′3/2Q
ρ2 cos θ1 sinχ

[(
λ2

1 − λ2
)

sin 2χdρ ∧ dξ − 2P ρ dχ ∧ dξ
]
∧ dφ1

= B2 ∧ C1 .

(2.17)

In the papers [12, 13] this solution of the Type IIA equations of motion was shown to

preserve N = 1 supersymmetry. In the coordinates used in this paper the Killing vector

∂ξ is dual to the R-symmetry of the CFT.

In appendix A we promote the background in eqs. (2.11)–(2.17) to a solution of eleven-

dimensional supergravity. We show that this background fits in the classification of N =

2As in the original paper [1], the dilaton needs to transform as well in order to fulfil the equations of

motion.
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1 AdS5 solutions in M-theory of [65]. We write in detail the forms satisfying a set of

differential relations and define the SU(2)-structure. The eleven dimensional lift suggests

that this solution is associated to M5-branes wrapped on a spherical 2d manifold. We

discuss this picture further in section 5.

As indicated, one goal of this paper is to propose a conformal field theory dual to the

Type IIA non-Abelian T-dual solution. We will do this by combining different insights

coming from the large ρ-asymptotics, the quantized charges and the calculation of field

theoretical observables using the background.

2.2.1 Asymptotics

In complicated systems, like those corresponding to intersections of branes, it is often

illuminating to consider the asymptotic behavior of the background. In the case at hand,

for the background in eqs. (2.11)–(2.17), we consider the leading-order behavior of the

solution, when ρ→∞. This allows us to read the brane intersection that in the decoupling

limit and for a very large number of branes generates the solution.

Indeed, for ρ→∞, the leading behavior of the NS-fields is

ds2 ≈ ds2
AdS5

+ L2 λ2
1

[
dΩ2

2(θ1, φ1) +

(
dχ2 +

λ2 sin2 χ

P (χ)

(
dξ + cos θ1dφ1

)2)
+

dρ2

λ2
1P (χ)

]
,

B2 ≈ −L2ρ

[
dΩ2(χ, ξ) +

λ2 cosχ

P (χ)
dΩ2(θ1, φ1)− λ2 cos θ1 ∂χ

(
cosχ

P (χ)

)
dχ ∧ dφ1

]
+
L2 sinχ

2P (χ)

(
λ2 − λ2

1

)
sin 2χdξ ∧ dρ , (2.18)

e−2φ ≈ L6

g2
sα
′3 P (χ) ρ2 ,

where we have performed a gauge transformation in B2, of the form B2 + dΛ1, with

Λ1 = L2λ2ρ cos θ1

(
cosχ

P (χ)

)
dφ1 .

Intuitively, this result suggests that we have two different types of NS-five branes. One

type of five-branes (which we refer to as NS ) extend along R1,3 × S2(θ1, φ1). The second

type of five branes (referred to as NS’ ) extend along R1,3 × S̃2(χ, ξ) . To preserve SUSY,

the spaces S2(θ1, φ1) and S̃2(χ, ξ) are fibered by the monopole gauge field A1 = cos θ1dφ1.

This fibration is also reflected in the B2-field, that contains a term that mixes the spheres.

The asymptotics of the RR-fields can be easily read from eq. (2.16). Indeed, the

expression F6 = dC5, generates asymptotically C5 ≈ ρr4dx1,3 ∧ dρ. This suggests an array

of D4 branes extended along the directions R1,3×ρ. D6 branes appear due to the presence

of the B2-field, that blows up the D4 branes due to the Myers effect [68].

In summary, the asymptotic analysis suggests that the background in eqs. (2.11)–

(2.17), is generated in the decoupling limit of an intersection of NS5-NS5’-D4 branes. This

will be confirmed by the calculation of the quantized charges associated to this solution.
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2.2.2 Quantized charges

In the papers [44, 45], the brane set-ups encoding the dynamics of the CFTs dual to the

corresponding non-Abelian T-dual backgrounds were proposed after a careful analysis of

the quantized charges. The charges that are relevant for the study of the non-Abelian

T-dual of the Klebanov-Witten background are those related to D4, D6 and NS5 branes.

Based on this analysis we will propose an array of branes, from which the dynamics of a

linear quiver with gauge groups of increasing rank will be obtained.

For D6 branes the Page charge reads,

QD6 =
1

2κ2
10 TD6

∫
(θ1,φ1)

F2 =
8L4λλ4

1

g2
s α
′2 =

2

27

L4

g2
s α
′2 = N6 , (2.19)

where we have absorbed an overall minus sign by choosing an orientation for the integrals.

Imposing the quantization of the D6 charge, the AdS radius L is quantized in terms of N6,

L4 =
27

2
g2
s α
′2N6 . (2.20)

This relation differs from that for the original background, see eq. (2.5), which is a common

feature already observed in the bibliography [19].

In turn, the Page charge associated to D4-branes vanishes,

QD4 =
1

2κ2
10 TD4

∫
M4

(
F4 − F2 ∧B2

)
= 0 . (2.21)

This charge becomes however important in the presence of large gauge transformations,

B2 → B2 + ∆B2 , (2.22)

under which the Page charges transform as,

∆QD4 = − 1

2κ2
10 TD4

∫
M4

F2 ∧∆B2 , ∆QD6 = 0 . (2.23)

Indeed, consider a four-manifold M4 = [θ1, φ1] × Σ2, with the two-cycle given by

Σ2 = [χ, ξ].3 Under a large gauge transformation of the form,

∆B2 = −nπ α′ sinχdχ ∧ dξ , d
[
∆B2

]
= 0 , (2.24)

the Page charges transform as

∆QD4 = nN6 , ∆QD6 = 0 . (2.25)

The first relation shows that n units of D4-brane charge are induced in each D6-brane.

Conversely, nN6 D4-branes can expand in the presence of the B2 field given by eq. (2.24)

into N6 D6-branes wrapped on Σ2, through Myers dielectric effect. Consider now the

(conveniently normalized) integral of the B2 field, given by eq. (2.12), along the non-trivial

3Note that this 2-cycle vanishes at ρ→ 0, while at ρ→∞ it is almost a two sphere of finite size.
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2-cycle Σ2 = [χ, ξ]. Following the paper [25], this must take values in the interval [0, 1].4

Imposing this condition implies that |b0| ≤ 1 with,

b0 =
1

4π2 α′

∫
Σ2

B2 = − 1

π

L2

α′

[
ρ−

√
2

6
√

1 + 54 ρ2
tanh−1

(
3
√

2 ρ√
1 + 54 ρ2

)]
. (2.26)

The asymptotic behavior of b0 for small and large values of ρ is given by,

b0 = − 48L2ρ3

πα′
+O(ρ5) , ρ� 1 ,

b0 = − L2

α′
ρ

π
+O

(
1

ρ

)
, ρ� 1 .

(2.27)

The expression given by eq. (2.26) is monotonically increasing for all ρ ∈ [0,∞), and takes

the value |b0| = 1 only once. In order to bring the function |b0(ρ)| back to the interval [0, 1]

we need to perform a large gauge transformation of the type defined in eq. (2.24), whenever

|b0(ρn)| = n, n ∈ N. The number of D4-branes in the configuration then increases by a

multiple of N6, as implied by eq. (2.25), each time we cross the position ρ = ρn.

The form of the B2 potential in eq. (2.12) suggests that it is also possible to take a

different 2-cycle,

Σ′2 = [θ1, φ1]χ=0 , (2.28)

which is a rounded S2(θ1, φ1) at χ = 0. As in the case analyzed above, large gauge

transformations are needed as we move in ρ in order to render b0 in the fundamental region,

b0 ∈ [0, 1]. This shift does not modify however the number of D4 or D6-branes, while it

induces NS5-brane charge (we call these NS5’ for later convenience) in the configuration.

Indeed, let us discuss the NS5-brane charges associated to the solution. Let us first

consider the three-cycle,

Σ3 = [ρ, χ, ξ] , (2.29)

built out of the first 2-cycle Σ2 = [χ, ξ] and the ρ-coordinate. Taking into account the

expression for the B2 field given by eq. (2.12) one finds,

H3

∣∣
Σ3

= L2

[
(λ2 − λ2

1) ρ2

2
∂χ

(
sinχ sin 2χ

Q

)
− P sinχ ∂ρ

(
ρ3

Q

)]
dρ ∧ dχ ∧ dξ . (2.30)

The first term does not contribute to the charge, which reads,

QNS5 =
1

4π2 α′

∫
(ρ,χ,ξ)

H3 = − 1

4π2 α′
2π L2ρ3

n

∫ π

0

P

Q
sinχdχ = b0(ρn) = n . (2.31)

This calculation shows that we have n NS5 branes for ρ ∈ [0, ρn]. If, on the other hand,

we take the cycle defined by

Σ′3 = [ρ, φ1, θ1]χ=0, (2.32)

we find that ρ′n = nπ α′/L2 and that a new NS5’ brane is created each time we cross these

values ρ′n for n = 1, 2, . . . .

4A physical interpretation of this condition in terms of a fundamental string action was presented in [35].
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Figure 1. Brane set-up consistent with the quantized charges of the non-Abelian T-dual solution,

consisting on α = 1, 2, . . . , n+1 NS5-branes (vertical black lines), β = 1, 2, . . . , n NS5’-branes (tilted

red dashed lines) and mN6 D4-branes (horizontal lines), where m = 1, 2, . . . , n+ 1 changes by one

each time a NS5-brane is crossed.

The conclusion of this analysis is that one can define two types of NS5-branes in the

non-Abelian T-dual background: NS5-branes located at ρn and transverse to S̃2(χ, ξ),

and NS5’-branes located at ρ′n = nπ α′/L2 and transverse to S2(θ1, φ1). These branes are

localized in the ρ direction, such that a NS5’-brane lies in between each pair of NS5-branes,

as illustrated in figure 1. Further, as implied by eq. (2.25), N6 D4-branes are created each

time a NS5-brane is crossed. This brane set-up will be the basis of our proposed quiver

in section 4, and will be instrumental in defining the dual CFT of the non-Abelian T-

dual solution. As we will see, it will allow us to identify the global symmetries and the

parameters characterizing the associated field theory.

Let us study now an important field theoretical quantity, calculated from the Type

IIA solution, the central charge.

2.2.3 Central charge

In this section, we compute the holographic central charge associated to the non-Abelian

T-dual solution in eqs. (2.11)–(2.17). This will be the main observable to check the validity

of the N = 1 quiver proposed in section 4.

We must be careful about the following subtle point. The calculation of the quantity

V̂int in eq. (2.7), will involve an integral in the ρ-direction of the metric in eq. (2.11). The

range of this coordinate is not determined by the process of non-Abelian T-duality (the

global issues we referred to in the Introduction). If we take 0 ≤ ρ <∞, we face the problem

that the central charge will be strictly infinite. A process of regularization or completion

of the background of eqs. (2.11)–(2.17) is needed. In this paper we choose to end the

space with a hard cut-off, namely 0 ≤ ρ ≤ ρn. We do know that this is geometrically

unsatisfactory. Nevertheless, the field theoretical analysis of section 4 will teach us that

a flavor group, represented by D6 branes added to the background of eqs. (2.11)–(2.17),

should end the space in the correct fashion. Previous experience [44] tells us that the hard-

cutoff used here does capture the result for the holographic central charge that is suitable

to compare with the field theoretical one found in section 4.
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We then proceed, by considering the metric in eq. (2.11), the dilaton in eq. (2.13) and

eqs. (2.6)–(2.8). We obtain,

cKWNATD =
9L6

(
ρ3
b − ρ3

a

)
64π3 α′3

N2
6 , (2.33)

where we have integrated ρ between two arbitrary values [ρa, ρb]. We have also used the

quantization condition of eq. (2.20). For ρ ∈
[
0, n π α′/L2

)
this gives

c
(0,n)
KWNATD =

9

64
n3N2

6 . (2.34)

On the other hand, for ρ ∈
[
nπ α′/L2, (n+ 1)π α′/L2

)
we obtain,

c
(n,n+1)
KWNATD =

9

64
N2

6

(
3n2 + 3n+ 1

)
. (2.35)

This becomes c
(n,n+1)
KWNATD = 27

64 N
2
4 in the large n limit, where ρ′n = ρn and we can use

that N4 = nN6 in the
[
nπ α′/L2, (n + 1)π α′/L2

)
interval. Interestingly, this expression

coincides with the central charge of the Abelian T-dual of the Klebanov-Witten background,

that we discuss in detail in appendix B. This is that of the original background — see

eq. (2.10), with N3 replaced by N4,

cKWATD =
27

64
N2

4 . (2.36)

For completeness, we also reproduce in appendix C.3 this value of the central charge from

the field theory, using a-maximization. This matching between the central charges of non-

Abelian and Abelian T-duals was found in previous examples [44, 45].

Next, we review aspects of the N = 1 quivers discussed in [55]. These will be the basis

of the quiver proposed to describe the field theory associated to the non-Abelian T-dual

solution. In section 4, the holographic result in eq. (2.34) will be found by purely field

theoretical means.

3 Basics of Bah-Bobev 4d N = 1 theories

In this section, we provide a summary of the results in [55], which will be instrumental for

our proposal of a field theory dual to the background in eqs. (2.11)–(2.17).

3.1 N = 1 linear quivers

In [55], Bah and Bobev introduced N = 1 linear quiver gauge theories built out of N = 2

and N = 1 vector multiplets and ordinary matter multiplets. These theories were argued

to flow to interacting 4d N = 1 SCFTs in the infrared. They consist of products of ` − 1

copies of SU(N) gauge groups, with either N = 1 (shaded) or N = 2 (unshaded) vector

multiplets — see figure 2. Let n1 be the number of N = 1 vector multiplets and n2 the

number of N = 2 vector multiplets. There are also ` − 2 bifundamental hypermultiplets

of SU(N) × SU(N), depicted in figure 2 as lines between the nodes, and two sets of N
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Figure 2. General linear quiver in [55]. Shaded (unshaded) circles represent SU(N), N = 1

(N = 2) vector multiplets. Lines between them represent bifundamentals of SU(N)× SU(N). The

boxes at the two ends represent SU(N) fundamentals.

hypermultiplets transforming in the fundamental of the two end SU(N) gauge groups.

Thus, there are in total ` − 1 = n1 + n2 gauge groups and ` matter multiplets. The total

global symmetry is,

SU(N)× SU(N)×U(1)`+n2 ×U(1)R,

corresponding to the SU(N) flavor symmetries acting on the end hypermultiplets, the U(1)

flavor symmetry acting on each of the ` hypermultiplets, the U(1) flavor acting on the chiral

adjoint superfields (there are as many as N = 2 vector multiplets) and the R-symmetry.

Out of these U(1)′s only a certain non-anomalous linear combination will survive in the IR

SCFT. Similarly, the fixed point R-charge is computed through a-maximization [69] as a

non-anomalous linear combination of the U(1)’s and U(1)R.

As shown in [55], it is convenient to assign a charge σi = ±1 to each matter hypermul-

tiplet, with the rule that N = 1 vector multiplets connect hypermultiplets with opposite

sign, while N = 2 vector multiplets connect hypermultiplets with the same sign. Let p be

the number of hypermultiplets with σi = +1 and q = `− p those with σi = −1, and let us

introduce the twist parameter z,

z =
p− q
`

. (3.1)

Thus, z = ±1 corresponds to a quiver with only N = 2 nodes, involving hypermultiplets

of the same charge. z = 0 corresponds in turn to a quiver with the same number of

hypermultiplets of each type, so it includes the quiver with only N = 1 nodes. We will

focus on 0 ≤ z ≤ 1 (q ≤ p) without loss of generality. We also introduce κ = (σ0 + σl)/2,

which can take values κ = −1, 0,+1. This will later be associated to the type of punctures

on the Riemann surface on which M5-branes are wrapped.

In a superconformal fixed point the a and c central charges can be computed from the

’t Hooft anomalies associated to the R-symmetry [70],

a =
3

32

(
3 TrR3 − TrR

)
, c =

1

32

(
9 TrR3 − 5 TrR

)
, (3.2)

where the R-symmetry is given by

Rε = R0 +
1

2
εF , (3.3)

and R0 is the anomaly free R-symmetry, F is the non-anomalous global U(1) symmetry

and ε is a number that is determined by a-maximization [69]. This was used in [55]

to compute the a and c central charges associated to the general quiver represented in

figure 2. Their values were shown to depend only on the set of parameters {κ, z, `,N}.
It was then conjectured that all quivers with the same {κ, z, `,N} should be dual to each
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Figure 3. The brane set-up associated to the Bah-Bobev N = 1 linear quivers. Vertical lines

represent NS5-branes extended along {x4, x5}, denoted in [55] as v-branes, while diagonal lines

represent the NS5’-branes extended along {x7, x8}, denoted as w-branes. The same number of

D4-branes extended along the x6 direction stretch between adjacent 5-branes.

other and flow to the same SCFT in the infrared. Moreover, for ` → ∞ the two central

charges were shown to agree. Therefore, in this limit the quivers can admit holographic

AdS duals. In section 4 we will provide a variation of these N = 1 quivers for which

this condition is satisfied, and argue that it is associated to the AdS5 non-Abelian T-dual

solution presented in section 2.

3.2 IIA brane realization and M-theory uplift

Interestingly, it was shown in [55] that the linear quivers discussed above have a natural

description in terms of D4, NS5, NS5’ brane set-ups that generalize the N = 2 brane

constructions in [56], and allow for an M-theory interpretation. The two types of NS5-

branes in this construction are taken to be orthogonal to each other, explicitly breaking

N = 2 supersymmetry to N = 1. The specific locations of the branes involved are

• N coincident D4-branes extend along R1,3 and the x6 direction.

• p non-coincident NS5-branes extend along R1,3 × {x4, x5}, and sit at x6 = xα6 for

α = 1, . . . , p.

• q non-coincident NS5’-branes extend along R1,3 × {x7, x8}, and sit at x6 = xβ6 for

β = 1, . . . , q.

The corresponding brane set-up is depicted in figure 3, see also [55].

In this configuration, open strings connecting D4-branes stretched between two parallel

NS5-branes are described at long distances and weak coupling by an N = 2 SU(N) vector

multiplet, while those connecting D4-branes stretched between perpendicular NS5 and

NS5’ branes are described by an N = 1 SU(N) vector multiplet. In turn, open strings

connecting adjacent D4-branes separated by a NS5-brane (NS5’-brane) are described at

low energies by bifundamental hypermultiplets with charge σi = 1 (σi = −1). Finally,

semi-infinite N D4-branes (or D6 branes) at both ends of the configuration yield two sets
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of hypermultiplets in the fundamental representation of SU(N). The resulting field theory

is effectively four dimensional at low energies compared to the inverse size of the D4 along

x6. The effective gauge coupling behaves as 1
g2
4
∼ x6,n+1−x6,n

gs
√
α′

. Given that the 5-branes

can be freely moved along the x6 direction, the gauge couplings are marginal parameters.

Rotations in the v = x4 + ix5 and w = x7 + ix8 planes of the NS5 and NS5’ branes give

a U(1)v and a U(1)w global symmetry, so that the IR fixed point R-symmetry and flavor

U(1) are realized geometrically as linear combinations of them:

R0 = U(1)v + U(1)w , F = U(1)v −U(1)w . (3.4)

Relying on similar N = 2 constructions in [56], it is possible to describe the previous

system of intersecting branes at strong coupling in M-theory. The x6 direction is combined

with the M-theory circle x11 to form a complex coordinate s = (x6 + ix11)/R11 describing

a Riemann surface Σ2, which is a punctured sphere or, equivalently, a punctured cylinder.

The uplift of this system yields,

• N M5-branes wrapping the cylinder, from the N D4-branes extended on x6.

• p simple punctures (in the language of [57]) on the cylinder, coming from the p

transversal M5-branes with flavor charge σi = 1.

• q simple punctures on the cylinder, coming from the q transversal M5-branes with

flavor charge σi = −1.

• Two maximal punctures, coming from the stacks of N transversal M5-branes at both

ends of the cylinder. They are also assigned σ0, σ` = ±1, from which the additional

parameter κ = (σ0 + σ`)/2 is defined, taking values κ = −1, 0,+1.

The cylinder or sphere the M5-branes wrap can be viewed as a Riemann surface Cg,n of

genus g = 0 and n = p + q + 2 punctures, so that Σ2 = C0,n. This Riemann surface can

be deformed by bringing some of the punctures close to each other (which corresponds

to certain weak and strong coupling limits of the dual 6d N = (0, 2) AN−1 field theory

living on the M5-branes) to a collection of higher-genus and less-punctured surfaces. The

κ parameter is associated to the type of punctures on the Cg,n Riemann surface.

This closes our summary of the findings of the paper [55], that we will use in the next

section. Let us now propose a dual CFT to our background in eqs. (2.11)–(2.17).

4 The non-Abelian T-dual of Klebanov-Witten as a N = 1 linear quiver

As we showed in section 2.2.2, the analysis of the quantized charges of the non-Abelian

T-dual solution is consistent with a D4, NS5, NS5’ brane set-up in which the number of

D4-branes stretched between the NS5 and NS5’ branes increases by N6 units every time

a NS5-brane is crossed. This configuration thus generalizes the brane set-ups discussed in

the previous section and in [55].

In this section, inspired by the previous analysis, we will use the brane set-up depicted

in figure 1 to propose a linear quiver dual to the background in eqs. (2.11)–(2.17). As
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a consistency check we will compute its central charge using a-maximization and show

that it is in perfect agreement with the holographic study in section 2.2.3 and the result

of eq. (2.34), in particular. We will show that the central charge also satisfies the well-

known 27/32 ratio [72] with the central charge associated to the non-Abelian T-dual of

AdS5 × S5/Z2. This suggests defining our N = 1 conformal field theory as the result

of deforming by mass terms the N = 2 CFT associated to the non-Abelian T-dual of

AdS5 × S5/Z2.

4.1 Proposed N = 1 linear quiver

The quantized charges associated to the non-Abelian T-dual solution are consistent with

a brane set-up, depicted in figure 1, in which D4-branes extend on IR1,3 × {ρ}, NS5-

branes on IR1,3 × S2(θ1, φ1) and NS5’-branes on IR1,3 × S̃2(χ, ξ). This produces for ρ ∈
[nπα′/L2, (n + 1)πα′/L2], n → ∞ and upon compactification, the brane set-up, depicted

in Figure 7 in appendix B, associated to the Abelian limit of the solution.

We conjecture that, in a similar fashion, the non-Abelian T-dual background in

eqs. (2.11)–(2.17), arises as the decoupling limit of a D4, NS5, NS5’ brane intersection.

As opposed to its Abelian counterpart, the precise way in which D-branes transform un-

der non-Abelian T-duality has not been worked out in the literature. This would require

analysing the transformation of the boundary conditions at the level of the sigma model

(see [71] for some preliminary steps in this direction). Still, as stressed in the previous

works [44, 45], similar assumptions based on the analysis of the quantized charges of the

supergravity background have produced consistent successful outcomes. Given that the

precise D4, NS5, NS5’ brane intersection is not known prior to the near horizon limit, it

is unclear, on the other hand, how the original D3-brane configuration associated to the

Klebanov-Witten solution would be recovered. In fact, even after taking the near hori-

zon limit it is unclear how the Klebanov-Witten background would be recovered from the

background defined by eqs. (2.11)–(2.17), given that the original SU(2) symmetry used to

construct it is no longer present.5 These issues make non-Abelian T-duality substantially

different from its Abelian counterpart, and underlie the fact that it can non-trivially change

the dual CFT.

Coming back to our proposal, we would have an infinite-length quiver with (in the

notation of section 3) p = n, q = n, ` = p+q = 2n and z = (p−q)/` = 0 with n→∞. The

associated field theory would consist on (2n−1) N = 1 vector multiplets and matter fields

connecting them. However, this infinitely-long quiver does not describe a four dimensional

field theory (its central charge is strictly infinite, among other problematic aspects). This

is the same issue that we discussed when calculating the holographic central charge in

section 2.2.3. Some regularization is needed and, as we will see, the field theory precisely

provides the way to do this.

Elaborating on the ideas in [44], we propose to study this quiver for finite n, completing

it as shown in figure 4. The proposed field theory has the following characteristics:

5This is related to the well-known non-invertibility of non-Abelian T-duality, noticed in the early

works [2–8].
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Figure 4. Linear quiver proposed as dual to the non-Abelian T-dual solution. There are two

matter fields Qj , Q̃j in the bifundamental and anti-bifundamental of each pair of nodes, associated

to a 5-brane connecting adjacent D4-stacks, with a total number of j = 1, . . . , n−1 hypermultiplets

Hj = (Qj , Q̃j) at each side of the quiver. We label r = 1, . . . , [n/2] the σj = +1 hypermultiplets

corresponding to NS5-branes and s = 1, 2, . . . , [n/2] the σj = −1 hypermultiplets from NS5’-branes,

assuming an alternating distribution of both types of 5-branes. This configuration comes from a

re-ordering of the branes in figure 1 that is consistent with Seiberg self-duality and the vanishing

of the beta functions and R-symmetry anomalies. The squares in the middle of the quiver denote

flavor groups corresponding either to semi-infinite D4-branes ending on the NS5 and NS5’ branes

or to D6-branes transversal to the D4-branes. They complete the quiver at finite n. We choose

σf1 = −σf2 for the corresponding fundamental hypermultiplets.

• It is strongly coupled. This is in correspondence with the fact that it should be dual

to an AdS solution whose internal space is smooth in a large region and reduces to

our non-Abelian T-dual background in eqs. (2.11)–(2.17) in some limit.

• The field theory is self-dual under Seiberg duality. This can be quickly seen, by

observing that each node is at the self-dual point (with Nf = 2Nc).

• The beta function and the R-symmetry anomalies vanish, in correspondence with the

SO(2, 4) isometry of the background and the number of preserved SUSYs.

• The central charge calculated by field theoretical means coincides (for long enough

quivers) with the holographic result of eq. (2.34).

• The quiver can be thought of as a mass deformation of the N = 2 quiver dual to the

non-Abelian T-dual of AdS5 × S5/Z2.

Below, we show that the field theory represented in figure 4 has all these characteristics.

As it happens in the paper [44], the completion we propose with the flavor groups has the

effect of ending the space at a given finite value in the ρ direction.

4.2 β-functions and R-symmetry anomalies

In this section we study the β-functions and the anomalies associated to the linear quiver

proposed in figure 4. This analysis clarifies that the quantum field theory flows to a

conformal fixed point in the infrared.

In a supersymmetric gauge theory, the β-function for a coupling constant g is given by

the well-known Novikov-Shifman-Vainshtein-Zakharov (NSVZ) formula [73], which can be
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U(1)

SU(N)

SU(N)

Figure 5. The R-symmetry anomaly.

written in terms of the number of colors, Nc, the number of flavors, Nfq , and the anomalous

dimensions for the matter fields, γq, as

βg ∼ 3Nc −
∑
q

Nfq (1− γq) . (4.1)

Here, we considered the Wilsonian beta function. The denominator in the NSVZ formula

is not relevant for us (see [74] for a nice explanation of this). Another important quan-

tity is the R-symmetry anomaly, given by the correlation function of three currents and

represented by the Feynman diagram in figure 5. The anomaly is given by the relation,〈
∂µJ5

µ

〉
∼ ∆ΘF F̃ , ∆Θ =

∑
Rf T (Rf ) , (4.2)

where Rf is the R-charge of the fermions in the multiplet. In the case of an SU(N)

gauge group

T (Rf ) =

 2N, for fermions in the adjoint representation

1, for fermions in the fundamental representation
(4.3)

Moreover, at the conformal point, one should take into account the relation between the

physical dimension of a gauge invariant operator O (with engineering dimension ∆O) and

its R-charge RO,

dim O = ∆O +
γO
2

=
3

2
RO . (4.4)

In the appendix C, we present details of these calculations for the well-known example of

the Klebanov-Witten CFT. Readers unfamiliar with that example can study the details in

appendix C and then come back to the more demanding calculation presented below.

Let us now analyze the quiver depicted in figure 4. We propose for the anomalous

dimensions and R-charges of the matter fields and gauginos the same values as in the

Klebanov-Witten CFT,

γQ = γQ̃ = −1

2
, RQ = RQ̃ =

1

2
, R(λ) = 1. (4.5)

Notice that in our proposal only one bifundamental field runs in each arrow. We call them

Q or Q̃ depending on the direction of the arrow. We find, substituting in eq. (4.1) for the

nodes with rank kN6,

βk ∼ 3 kN6 −
(

(k + 1)N6 + (k − 1)N6)
)(

1 +
1

2

)
= 0 , k = 1, . . . , n . (4.6)
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The first term reflects the contribution of the gauge multiplets and the second that of the

matter fields. For the anomaly we find,

∆θk = 2 kN6 + 2
(

(k + 1)N6 + (k − 1)N6

)(
− 1

2

)
= 0 , k = 1, . . . , n . (4.7)

The first term indicates the contribution of the gauginos and the second one the contribu-

tion of the fermions in the Q, Q̃ multiplets.

These calculations indicate that both R-symmetry anomalies and beta functions are

vanishing. Indeed, they belong to the same anomaly multiplet. Also, notice that the large

anomalous dimensions indicate that the CFT is strongly coupled. With this numerology,

we calculate that

dim Q = dim Q̃ =
3

4
. (4.8)

This allows for the presence of superpotential terms involving four matter multiplets, like

the ones proposed in [55]. Let us move now to the calculation of the central charge.

4.3 Field-theoretical central charge

In this section we compute the central charge of the quiver depicted in figure 4 at the fixed

point, using the a-maximization procedure [69].

As recalled in section 3, the a and c central charges can be computed from the N = 1

R-symmetry t’Hooft anomalies of the fermionic degrees of freedom of the theory,

a(ε) =
3

32

(
3 TrR3

ε − TrRε
)
, c(ε) =

1

32

(
9 TrR3

ε − 5 TrRε
)
. (4.9)

The R-symmetry is given by Rε = R0 + 1
2 εF . Assigning charges R0(Qj) = R0(Q̃j) = 1/2

to the chiral multiplet scalars, we have that

Rε(Qj) = Rε(Q̃j) =
1

2

(
1 + ε σj

)
,

and, for the fermions

Rε(ψj) = Rε(ψ̃j) =
1

2

(
− 1 + ε σj

)
.

Now, we can compute the linear contribution to the anomaly coming from the hypermulti-

plet Hj = (Qj , Q̃j), whose chiral fields transform in the fundamental of a gauge group with

rank Na and in the anti-fundamental of another gauge group with rank Nb, and vice-versa:

TrRε(Hj) = NaNb

(
Rε(ψj) +Rε(ψ̃j)

)
= NaNb(ε σj − 1) . (4.10)

The cubic contribution is

TrR3
ε (Hj) = NaNb

(
R3
ε (ψj) +R3

ε (ψ̃j)
)

= 2NaNb

[
1

2
(ε σj − 1)

]3

. (4.11)

In turn, the linear and cubic anomaly contributions from an N = 1 vector multiplet

Vt are given by,

TrRε(Vt) = TrR3
ε (Vt) = N2

a − 1 , (4.12)

where we have used that Rε(λ) = R0(λ) = 1 for the gaugino.
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We now consider the completed quiver in figure 4. Hypermultiplets with σj = +1 and

σj = −1 (transforming in the bifundamental of gauge groups of ranks Nj , Nj+1) alternate

along the quiver, and σf1 = −σf2 . In this way all nodes are equipped with N = 1 vector

multiplets. Moreover, we have z = 0 exactly, as well as κ = 0. The total linear contribution

of the hypermultiplets is then:

TrRε(H) =

n−1∑
j=1,left

TrRε(Hj) +

n−1∑
j=1,right

TrRε(Hj) +

2∑
i=1

TrRε(Hfi)

= N2
6

{
n−1∑
j=1

j
(
j + 1

)(
ε
���

���
���:0

(σj,left + σj,right)− 1
)

+ n
2∑
i=1

(
ε σfi − 1

)}

= N2
6

{
− 2

n−1∑
j=1

j
(
j + 1

)
+ n

(
ε���

���:
0

(σf1 + σf2)− 2
)}

= N2
6

{
− 2

3
n
(
n2 − 1

)
− 2n

}
= N2

6

{
− 2

3
n3 − 4

3
n

}
≈ −2

3
n3N2

6 +O(n) . (4.13)

In the last line the approximation of a long quiver (large n) has been used. Similarly, the

total cubic contribution of the hypermultiplets can be readily computed to be,

TrR3
ε (H) =

n−1∑
j=1,left

TrR3
ε (Hj) +

n−1∑
j=1,right

TrR3
ε (Hj) +

2∑
i=1

TrR3
ε (Hfi)

= N2
6

[
n−1∑
j=1

j
(
j+1

)1

4

((
ε σj,left−1

)3
+
(
ε σj,right−1

)3)
+ nN2

6

2∑
i=1

1

4

(
ε σfi − 1

)3]

=
N2

6

4

[
− 2(1 + 3ε2)

n−1∑
j=1

j
(
j + 1

)
+ n

2∑
i=1

(
ε σfi − 1

)3]

=
N2

6

12

[
− 2
(
1 + 3ε2

)
n3 − (12ε2 + 4)n

]
≈ −1

6
n3N2

6

(
1 + 3 ε2

)
+O(n), (4.14)

where long quivers have been considered in the last expression. In turn, recalling that each

node appears twice in the quiver depicted in figure 4, with the exception of the central one,

the trace anomaly coming from the N = 1 vector multiplets becomes,

TrRε(V ) = TrR3
ε (V ) = 2

n−1∑
t=1

TrRε(Vt) + TrRε(Vn) = 2

n−1∑
t=1

(
t2N2

6 − 1
)

+
(
n2N2

6 − 1
)

=
N2

6

3

(
2n3 + n

)
− 2(n− 1) ≈ 2

3
n3N2

6 +O(n) . (4.15)

From this result we see that TrRε(V ) ≈ −TrRε(H) in the large n limit, so that the overall

linear trace anomaly is of order nN2
6 at most. Putting all these expressions together we
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Figure 6. Completed quiver associated to the non-Abelian T-dual of AdS5 × S5. Each line

represents a hypermultiplet of N = 2 SUSY.

find, for the exact charges in eq. (4.9),

a(ε) =
3N2

6

64

{
3(1− ε2)n3 + 2(1− 3ε2)n− 4

N2
6

(2n− 1)

}
,

c(ε) =
N2

6

64

{
9(1− ε2)n3 + 2(5− 9ε2)n− 8

N2
6

(2n− 1)

}
. (4.16)

From these expressions we see that a(ε) is clearly maximized for ε = 0, as expected for the

N = 1 fixed point [55]. The superconformal central charges are thus found to be

aN=1 ≡ a(ε = 0) =
3

64

{
(3n3 + 2n)N2

6 − 4(2n− 1)
}
,

cN=1 ≡ c(ε = 0) =
1

64

{
(9n3 + 10n)N2

6 − 8(2n− 1)
}
. (4.17)

They give, in the large n limit,

cN=1 ≈ aN=1 ≈
9

64
n3N2

6 +O(n) . (4.18)

This final result matches the holographic calculation given by eq. (2.34). This provides a

non-trivial check of the validity of the linear quiver in figure 4 as dual to the background in

eqs. (2.11)–(2.17). It is noteworthy that the agreement with the holographic result occurs

in the large number of nodes limit, n→∞.

A further non-trivial check of the validity of our proposed quiver is that the central

charge given by (4.18) and that associated with the non-Abelian T-dual of AdS5 × S5/Z2

satisfy the same 27/32 relation [72], that is,

cN=1 =
27

32
cN=2, (4.19)

as the central charges of the corresponding theories prior to dualization. Indeed, the quiver

associated to the non-Abelian T-dual of AdS5 × S5/Z2 can be obtained by modding out

by Z2 the quiver describing the non-Abelian T-dual of AdS5 × S5, constructed in [44] and

depicted in figure 6. This quiver was completed at finite n by a flavor group with gauge

group SU(nN6). It thus satisfies the condition to be conformal (preserving N = 2 SUSY),

i.e. that the number of flavors is twice the number of colors at each node. Modding out

by Z2 results in the same quiver in figure 4, but built out of 2n N = 2 vector and matter

multiplets. Taking the central charge, computed in [44], for the non-Abelian T-dual of

AdS5 × S5 and doubling it, we obtain the central charge of the non-Abelian T-dual of

AdS5 × S5/Z2

cNATDAdS5×S5/Z2
≈ 2× 1

12
n3N2

6 +O
(
n
)
, (4.20)
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and we find that eq. (4.19) indeed holds with cN=1 as in eq. (4.18) and cN=2 as in

eq. (4.20). We have checked in appendix C.2 that the same result (4.20) is reproduced

using a-maximization. The a-charge is maximized for ε = 1
3 , as previously encountered

in [55].

Further, one can check that also at finite n, aN=1 and cN=1 satisfy the relation [72],6

aN=1 =
9

32

(
4 aN=2 − cN=2

)
, cN=1 =

1

32

(
− 12 aN=2 + 39 cN=2

)
(4.21)

with the aN=2, cN=2 exact central charges of the N = 2 quiver. The explicit expressions

for aN=2 and cN=2 are given in eq. (C.11) in appendix C.2. This precisely defines our dual

CFT as the result of deforming by mass terms the CFT dual to the Sfetsos-Thompson

solution modded by Z2.

The material presented in this section makes very precise the somewhat loose ideas

proposed in the works [12, 13]. In particular, we have identified the concrete relation via a

RG-flow between the non-Abelian T-dual of AdS5× S2/Z2 and the non-Abelian T-dual of

the Klebanov-Witten solution. Notice that here, we are providing precisions about the CFT

dual to the non-Abelian T-dual backgrounds. This more precise information is matched

by the regularized form of the non-Abelian T-dual solution.

The diagram in the Introduction section summarizes the connections between the UV

and IR field theories discussed in this section. We repeat it here for the perusal of the reader.

AdS5 × S5/Z2

mass
��

// NATD of AdS5 × S5/Z2

mass
��

AdS5 × T 1,1 // NATD of AdS5 × T 1,1

As a closing remark, an explicit flow (triggered by a VEV) between the N = 1 and the

N = 2 non-Abelian T-dual backgrounds was constructed in [35]. It should be interesting

to use the detailed field theoretical picture developed above and in [44], to be more precise

about various aspects of this RG-flow.

5 Solving the INST-BBBW puzzle

The non-Abelian T-dual of the Klebanov-Witten background was first written in [12, 13]

(INST). Further, in that paper an attempt was made to match the non-Abelian T-dual

background with a Bah, Beem, Bobev and Wecht (BBBW) solution [59]. This matching

was feasible assuming a particular split of the metric into a seven-dimensional and a four-

dimensional internal space (see below). The formula in [59] for the central charge of BBBW

solutions led however to a ∼ c ∼ 0 +O(N) for the non-Abelian T-dual solution, in blatant

disagreement with the holographic result. This was the puzzle that the authors of [12, 13]

pointed out. In this section we present its resolution. We start by summarizing the most

relevant aspects of the work [59].

6We would like to thank Nikolay Bobev for suggesting this to us.
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In the work of Bah, Beem, Bobev and Wecht new N = 1 AdS5 solutions in M-theory

were constructed, describing the fixed points of new N = 1 field theories associated to M5-

branes wrapped on complex curves. The central charges of these SCFTs were computed

using the six dimensional anomaly polynomial and a-maximization, and were shown to

match, in the large number of M5-branes limit, the holographic results.

The solutions constructed in [59] were obtained by considering M-theory compactified

on a deformed four-sphere. In principle, this compactification leads to an SO(5)-gauged

supergravity in seven dimensions. Following the ideas in [47], BBBW searched for their

solutions in the seven dimensional gravity theory (a U(1)2 truncation of the full SO(5)

theory) discussed in [75]. They proposed a background consisting of a metric, two gauge

fields A
(i)
µ and two scalars λ(i), of the form

ds2
7 = e2f(r)[dx2

1,3 + dr2] + e2g(r)dΣk(x1, x2),

F (1) =
p

8g − 8
volΣk, F (2) =

q

8g − 8
volΣk, λ(i)(r). (5.1)

They then searched for ‘fixed point’ solutions, namely, those where d
drλ

(i) = d
drg = 0 and

f ∼ − log r, leading to backgrounds of the form AdS5 × Σk. They found general solutions

depending on four parameters (N,κ, z, g). For excitations with wavelength longer than the

size of Σk, these are dual to four dimensional CFTs. In the dual CFT N is the number of

M5-branes, κ = ±1, 0 is the curvature of the 2d Riemann surface that they are wrapping,

g is its genus and z is the so-called ‘twisting parameter’, defined as z = (p−q)
2(g−1) from the

integer numbers p, q that indicate the twisting applied to the M5-branes. The holographic

central charge computed in [59] depends on these parameters, and reads

c = a = N3(1− g)

[
1− 9z2 + κ(1 + 3z2)3/2

48z2

]
. (5.2)

BBBW completed their analysis deriving various of their formulas, in particular the holo-

graphic central charge, using purely 4d CFT arguments. Their CFTs are combinations

of Gaiotto’s TN -theories, conveniently gauged and connected with other TN factors, with

either N = 1 or N = 2 vector multiplets (shaded and unshaded TN ’s in the same line as

what we explained in section 3).

The key-point to be kept in mind after this discussion is that these results were obtained

in the context of a compactification of eleven-dimensional supergravity to seven dimensions.

Let us now come back to the paper [12, 13]. The matching of the non-Abelian T-

dual solution with a BBBW geometry assumed that the seven dimensional part of the

metric in (5.1) was AdS5×S2(θ1, φ1) and that the internal space contained the coordinates

[ρ, χ, ξ, x11]. Also, the authors of [12, 13] chose the parameters κ = z = 1 for such matching.

Using the formula (5.2) in BBBW for the central charge they then found that at leading

order the central charge vanished.

What was not-correct in the analysis of [12, 13] was the assumption that the non-

Abelian T-dual solution could be obtained from a compactification of M-theory on a de-

formed four-sphere (and hence be in the BBBW class of solutions). In fact, inspecting the
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BPS equations of BBBW — eq. (3.10) of [59] — one finds that a fixed point solution does

not exist for the set of values κ = |z| = 1. Even more, the generic solution that BBBW

wrote in their eq. (3.8) is troublesome for those same values.

A parallel argument can be made by comparing the BBBW and non-Abelian T-dual

solutions in the language of the paper [76]. Indeed, the comparison in the appendix C of [76],

shows that these solutions fit in their formalism in section 4.2 for values of parameters that

are incompatible. Either BBBW is fit or the non-Abelian T-dual solution is, for a chosen

set of parameters.

The resolution to this problem is that the non-Abelian T-dual background should in-

stead be thought of as providing a non-compactification of eleven dimensional supergravity.

Strictly speaking, our coordinate ρ runs in [0,∞], the four manifold is non-compact. In

our calculation of the central charge, we assumed that the ρ-coordinate was bounded in

[0, nπ α′

L2 ], but this hard cut-off, as we emphasized, is not a geometrically satisfactory way

of bounding a coordinate. There should be another, more general solution, that contains

our non-Abelian T-dual metric in a small patch of the space (for small values of ρ), and

closes the ρ-coordinate at some large value ρn = nπ α′

L2 . But this putative new metric, espe-

cially its behaviour near ρn, will differ considerably from the one obtained via non-Abelian

T-duality. Below, we will comment more about this putative solution.

Let us close with some field theoretical remarks. The class of CFTs studied by

BBBW [59] are quite different from those studied by Bah and Bobev in [55]. Their central

charges are different, and the first involve Gaiotto’s TN theories while the second do not.

In the same line, our CFT discussed in section 4 is a generalization, but strictly different,

of the theories in [55], and is certainly different from those in [59].

The quiver we presented in section 4 encodes the dynamics of a solution in Type

IIA/M-theory where the ρ-coordinate is bounded in a geometrically sounding fashion. The

addition of the flavor groups in our quiver encode the way in which the ρ-coordinate should

be ended. Indeed, in analogy with what was observed in [44, 45], we expect the metric

behaving like that of D6 branes close to the end of the space. In M-theory language, we

expect to find a puncture on the Riemann surface, representing the presence of flavor groups

in the dual CFT. We will be slightly more precise about this in the Conclusions section.

6 Conclusions and future directions

Let us briefly summarize the main achievements of this paper.

After discussing details of the Type IIA solution obtained by non-Abelian T-duality

applied on the Klebanov-Witten background, we carefully studied its quantized charges

and holographic central charge (section 2). We lifted the solution to M-theory and showed

by explicit calculation of the relevant differential forms that the background has SU(2)-

structure and fits the classification of [65].

Based on the quantized charges, we proposed a brane set-up (section 4) and a precise

quiver gauge theory, generalizing the class of theories discussed by Bah and Bobev in [55]

(and summarized in our section 3). This quiver was used to calculate the central charge,

one of the important observables of a conformal field theory at strong coupling. Indeed, in
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section 4, we showed the precise agreement of this observable, computed by field theoretical

means, with the holographic central charge. We also showed that the quiver has a strongly

coupled IR-fixed point. Finally, section 5, solves a puzzle raised in previous bibliography.

Various appendices discuss technical points in detail. In particular, relations of the non-

Abelian T-dual of the Klebanov-Witten background and the more conventional T-dual,

details about the dual field theory, etc, are carefully explained there.

To close this paper let us state the most obvious and natural continuation of our work.

As we discussed, the holographic central charge calculation in section 2 was done for a

regulated version of the Type IIA background. Indeed, the integral over the internal space

was taken to range in a finite interval for the ρ-coordinate. We introduced a hard-cutoff,

but emphasized that this form of regularization is not rigorous from a geometric viewpoint.

Fortunately, the dual CFT provides a rationale to regulate the space. The flavor groups

SU(N6) that end our quiver field theory (see figure 4), will be reflected in the Type IIA

background by the presence of flavor branes that will backreact and end the geometry,

solving the Einstein’s equations. In eleven dimensions, the same effect will be captured by

punctures on the S2 that the M5 branes are wrapping. A phenomenon like this was at

work in the papers [44, 45].

The formalism to backreact these flavor D6 branes is far-less straightforward in the

present case, as the number of isometries and SUSY is less than in the cases of [44, 45].

Qualitatively one may think of defining the completed solution by deforming with mass

terms the superposition of N = 2 Maldacena-Nunez solutions [47] used in [44] to complete

the Sfetsos-Thompson background. This would give rise to a superposition of N = 1 MN

solutions defining the completed non-Abelian T-dual solution. It is unclear however in

which precise way this superposition would solve the (very non-linear) PDEs associated to

N = 1 solutions [65, 77]. We see two possible paths to follow:

• In the paper [77], Bah rewrote the general M-theory background of [65] in terms of

a new set of coordinates that are more useful to discuss the addition of punctures

on the Riemann surface. In the type IIA language the new solutions found using

Bah’s non-linear and coupled PDEs should represent the addition of the flavor D6

branes argued above. The equations need to be solved close to the singularity (the

puncture or the flavor D6 brane) and then numerically matched with the rest of the

non-Abelian T-dual background.

• In [76] generic backgrounds in massive Type IIA were found with an AdS5 factor in

the metric and preserving eight SUSYs. For the particular case in which the internal

space contains a Riemann surface of constant curvature, the involved set of non-linear

and coupled PDEs simplifies considerably. One of the solutions, for the case in which

the massive parameter vanishes, is the one studied in this paper — named INST

in [76]. Since the paper [76] and some follow-up works have discussed ways of ending

these spaces by the addition of D6 and D8 branes, we could consider these technical

developments together with the ideas discussed above.

Finding a completed or regularized solution would provide the first example for a back-

– 25 –

158 3.5. The AdS5 non-Abelian T-dual of KW as a N = 1 linear quiver



J
H
E
P
0
9
(
2
0
1
7
)
0
3
8

ground dual to a CFT like that discussed in section 4. The natural following steps

would be to extend the formalism to discuss the situations for a cascading QFT. In fact,

the precise knowledge of the CFT we have achieved in this paper can be used to im-

prove the understanding and cure the singularity structure of the backgrounds written

in the first paper in [12, 13], in [20], etc. We reserve these problems to be discussed in

forthcoming publications.
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A Connection with the GMSW classification

In this appendix we prove that the uplift of the non-Abelian T-dual of the Klebanov-Witten

solution fits in the classification of N = 1 AdS5 backgrounds in M-theory of GMSW [65].

A.1 Uplift of the non-Abelian T-dual solution

The eleven dimensional uplift of the non-Abelian T-dual solution consists of metric and

4-form flux. The metric is given by

ds2
11 = e−

2 Φ
3 ds2

IIA + e
4 Φ
3
(
dx11 + C1

)2
, (A.1)

where x11 stands for the 11th coordinate, ds2
IIA is the ten dimensional metric, given by

eq. (2.11), Φ is the dilaton, given by eq. (2.13), and C1 is the RR potential given in

eq. (2.17). The eleven dimensional four-form field, FM4 , is derived from FM4 = dCM3 , where

CM3 = C3 +B2 ∧ dx11 , (A.2)

and C3 and B2 are given by (2.17) and (2.12), respectively. The final expression for FM4 is

given by

FM4 = −
α′ λ2

(
L4 λ4

1 + α′2 ρ2
)

Q
cosχdΩ2(θ1, φ1) ∧ dρ ∧ dx11

+
α′ L4 λ4

1 λ
2

Q
ρ sinχdΩ2(θ1, φ1) ∧ dχ ∧ dx11
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+
4α′3/2 L4 λ4

1 λ
(
λ2 − λ2

1

)
gsQ

ρ2 cosχ sin2 χdΩ2(θ1, φ1) ∧ dρ ∧ dξ

+
4α′3/2 L4 λ4

1 λP

gsQ
ρ3 dΩ2(θ1, φ1) ∧ dΩ2(χ, ξ)

+
4α′3/2 L4 λ4

1 λ
3 S

Q2
ρ2 cos θ1 dΩ2(χ, ξ) ∧ dρ ∧ dφ1

+
α′3 λ2 S
Q2

ρ2 sinχ
(
dξ + cos θ1 dφ1

)
∧ dρ ∧ dχ ∧ dx11 , (A.3)

where for the sake of clarity we have defined,

S ≡ Q− 2L4 λ4
1

(
λ2 + λ2

1

)
− 2α′2 ρ2 λ2

1 . (A.4)

In the large n limit this expression takes the simpler form (λ2 = 1/9, λ2
1 = 1/6, α′ = gs = 1),

FM4 ≈
L4

27
(ρ− nπ) dΩ2(θ1, φ1) ∧ dΩ2(χ, ξ) , (A.5)

which tells us that the M5-branes sourcing this flux are transversal to both squashed

two-spheres S2(θ1, φ1) and S̃2(χ, ξ). These are associated to the global isometries U(1)w
and U(1)v, whose product lies in the Cartan of both the local R-symmetry and the non-

anomalous flavor symmetry.

A.2 Review of GMSW

Before matching the previous solution within the classification in [65], let us briefly review

the most general N = 1 eleven dimensional solutions with an AdS5 factor found in that

paper. These solutions are described by a metric of the form,

ds2
11 = e2 Λ

[
ds2
AdS5

+ ds2
M4

+
e−6 Λ

cos2 ζ
dy2 +

cos2 ζ

9m2

(
dψ̃ + ρ̃

)2]
. (A.6)

Here ψ̃ is the R-symmetry direction, ρ̃ is a one-form defined on M4, whose components

depend on both the M4 coordinates and y, and Λ and ζ are functions also depending on

the M4 coordinates and y. The coordinate y is related to the warping factor Λ and the

function ζ through,

2my = e3 Λ sin ζ , (A.7)

with m being the inverse radius of AdS5.

The four-dimensional manifold M4 admits an SU(2) structure which is characterized

by a (1, 1)-form J and a complex (2, 0)-form Ω. The SU(2) structure forms, together with

the frame components K1 and K2, defined as,

K1 ≡ e−3 Λ

cos ζ
dy , K2 ≡ cos ζ

3m

(
dψ̃ + ρ̃

)
, (A.8)

must satisfy the following set of differential conditions dictated by supersymmetry,

e−3 Λ d
(
e3 Λ sin ζ

)
= 2m cos ζ K1 , (A.9)

e−6 Λ d
(
e6 Λ cos ζ Ω

)
= 3mΩ ∧

(
− sin ζ K1 + iK2

)
, (A.10)

e−6 Λ d
(
e6 Λ cos ζ K2

)
= e−3 Λ ? G+ 4m

(
J − sin ζ K1 ∧K2

)
, (A.11)

e−6 Λ d
(
e6 Λ cos ζ J ∧K2

)
= e−3 Λ sin ζ G+m

(
J ∧ J − 2 sin ζ J ∧K1 ∧K2

)
. (A.12)
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In the above formulas, ? stands for Hodge duality in the six-dimensional space spanned by

M4 and the one-forms K1 and K2. G is an eleven-dimensional four-form whose components

lie along the six-dimensional space that is transverse to AdS5,7

G =− ∂ye−6 Λ v̂ol4 −
e−9 Λ

cos ζ

(
?̂4d4e

6 Λ
)
∧K1 − cos3 ζ

3m

(
?̂4∂yρ̃

)
∧K2

−
[
e3 Λ

3m
cos2 ζ ?̂4d4ρ̃+ 4me−3 Λ Ĵ

]
∧K1 ∧K2 .

(A.13)

In this expression the hatted quantities are referred to the four-dimensional metric

ĝ
(4)
µν = e6 Λ g

(4)
µν . Finally, d4 is the exterior derivative on the four-dimensional space that is

transverse to AdS5 and K1, K2.

A.3 Recovering the non-Abelian T-dual from GMSW

Let us now find the explicit map between the GMSW geometry and the lifted non-Abelian

T-dual geometry. In order to do this we first identify the functions Λ and ζ according to,

e6 Λ = 4 y2 +
q

9
, cos ζ =

√
q

36 y2 + q
, (A.14)

where q is a function of the coordinates on M4 and y, determined below. We also take

ρ̃ = − 1

6 q
dw − 1− 12 q

12 q
cos θ1 dφ1 . (A.15)

Then the one-forms K1 and K2 read,

K1 =
3
√
q
dy , K2 =

1

3m

√
q

36 y2 + q

[
dψ̃ − 1

6 q
dw − 1− 12 q

12 q
cos θ1 dφ1

]
. (A.16)

Moreover, we define an orthogonal frame for the four-dimensional space M4,

e1 =
1√
6

sin θ1 dφ1 , e2 =
1√
6
dθ1

e3 =
1

18

√
36 q − 1

36 y2 q + q2
dz , e4 =

1

18

√
36 q − 1

36 y2 q + q2

(
dw +

1

2
cos θ1 dφ1

)
.

(A.17)

In the above expressions, q can be thought of as a function of z and y through the relation,

z − 162 y2 − 36 q − 1

12
− 1

12
ln
(
36 q − 1

)
= 0 . (A.18)

Solving this equation for q one finds,8

q =
1

36

[
1 + ProductLog

(
e12 (z−162 y2)

)]
. (A.19)

7There is a sign difference between the first term in the second line of (A.13) and the corresponding

term in eq. (2.50) of [65], that is due to our different conventions for Hodge duality.
8With ProductLog(Z) we mean the solution of the equation Z =W eW in terms of W.
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Figure 7. Circular quiver associated to the Abelian T-dual solution and corresponding brane set-

up. There are N4 D4-branes stretched between the NS5 and NS5’ branes. NS5 and NS5’-branes

are represented by transversal black and red dashed lines, respectively.

From the above frame one can construct the forms J and Ω of the SU(2) structure on

M4 as,

J = e1 ∧ e2 + e3 ∧ e4 , Ω = ei ψ̃
(
e1 + i e2

)
∧
(
e3 + i e4

)
. (A.20)

Both the metric and the 4-form flux associated to our solution are then obtained after

identifying,9

y =
ρ cosχ

6
, w = 9x11 +

ξ

6
, ψ̃ = ξ (A.21)

and

q =
1

36
+

3

2
ρ2 sin2 χ . (A.22)

One can also check that with the above definitions the constraints (A.9)–(A.12), proving

that the solution of appendix A.1 fits into the class of solutions found in [65], are satisfied.

B The Abelian T-dual of the Klebanov-Witten solution

The Abelian T-dual, Type IIA description, of the Klebanov-Witten theory is particularly

useful for the study of certain properties of this theory [63, 64]. One interesting aspect is

that the field theory can directly be read from the D4, NS5, NS5’ brane set-up associated

to this solution. We have depicted both the brane set-up and the associated quiver in

figure 7.

In this appendix we discuss some aspects of this description that are relevant for the

understanding of the CFT interpretation of the non-Abelian T-dual solution, the main

objective of this work.

B.1 Background

The paper [63] considered an Abelian T-duality transformation along the Hopf-fiber di-

rection of the T 1,1. This dualization gives rise to a well-defined string theory background.

9We take L = m = α′ = gs = 1 for convenience. There is a minus overall sign between G, from (A.13),

and F4, from (A.3), due to our different conventions.
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It is however a typical example of Supersymmetry without supersymmetry [78], being the

low energy supergravity background non-supersymmetric. Since our ultimate goal in this

section will be to compare with the non-Abelian T-dual solution, which is only guaran-

teed to be a well-defined string theory background at low energies, we will instead dualize

along the φ2 azimuthal direction of the T 1,1. This preserves the N = 1 supersymmetry of

the Klebanov-Witten solution, and can be matched directly with the non-Abelian T-dual

solution in the large ρ limit.

We start by rewriting the Klebanov-Witten metric in terms of the T-duality preferred

frame, in which φ2 does only appear in the form dφ2 and just in one vielbein,

ex
µ

=
r

L
dxµ , er =

L

r
dr , e1 = Lλ1 dθ1 , e2 = Lλ1 sin θ1 dφ1 ,

e1̂ = Lλ2 dθ2 , e2̂ = Lλλ2
sin θ2√
P (θ2)

(
dψ + cos θ1 dφ1

)
,

e3 = eC
(
dφ2 + Ã1

)
, (B.1)

where e2C = L2P (θ2) with P (θ2) = λ2 cos2 θ2 + λ2
2 sin2 θ2, and we have introduced the

connection

Ã1 =
λ2 cos θ2

P (θ2)

(
dψ + cos θ1 dφ1

)
.

The Klebanov-Witten metric thus reads

ds2 = ds2
AdS5

+ L2

[
λ2

1 dΩ2
2(θ1, φ1) + λ2

2

(
dθ2

2 +
λ2 sin2 θ2

P (θ2)

(
dψ + cos θ1dφ1

)2)
+ P (θ2)

(
dφ2 +

λ2 cos θ2

P (θ2)

(
dψ + cos θ1dφ1

))2]
. (B.2)

A U(1) T-duality performed on the φ2 direction trades the vielbein e3 for ê = α′e−Cdφ2,

and generates a NS-NS 2-form B2 = α′Ã1 ∧ dφ2. The NS-NS sector for the dual solution

is then given by:10

ds2
ATD = ds2

AdS5
+ L2λ2

1

[
dΩ2

2(θ1, φ1)+

(
dθ2

2 +
λ2 sin2 θ2

P (θ2)

(
dψ+cos θ1dφ1

)2)
+

dφ2
2

λ2
1P (θ2)

]
,

BATD
2 = −L

2 λ2 cos θ2

P (θ2)

(
dφ2 ∧ dψ + cos θ1 dφ2 ∧ dφ1

)
,

e−2ΦATD =
L2

g2
sα
′ P (θ2) . (B.3)

We can see in the metric the geometrical realization of the U(1) R-symmetry in the ψ

direction. We can also see that it agrees with the asymptotic form of the metric of the

non-Abelian T-dual solution, given by the first equation in (2.18), under the replacements

χ→ θ2 , ξ → ψ , ρ→ φ2 . (B.4)

10We rescale φ2 → L2

α′ φ2, so that the metric of the internal space scales with L2. We also use that λ2 = λ1

for later comparison with the NATD solution.
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The B2 fields do also agree, once a gauge transformation of parameter

Λ = −L2 cos θ2 φ2

(
dψ +

λ2 cos θ1

P (θ2)
dφ1

)
(B.5)

is performed, giving rise to

B2 = −L2φ2

[
dΩ2(θ2, ψ) +

λ2 cos θ2

P (θ2)
dΩ2(θ1, φ1)− λ2 cos θ1 ∂θ2

(
cos θ2

P (θ2)

)
dθ2 ∧ dφ1

]

+
L2 sin θ2

2P (θ2)

(
λ2 − λ2

1

)
sin 2θ2 dψ ∧ dφ2 . (B.6)

We will use this expression for the B2-field in the remaining of this section. As in [44, 45],

the two dilatons satisfy e−2ΦNATD ≈ ρ2 e−2ΦATD for large ρ (after re-absorbing the scaling

factors in ρ → α′

L2 ρ). As explained in [44, 45], this relation has its origin in the different

measures in the partition functions of the non-Abelian and Abelian T-dual sigma models.

Finally, the RR fields are:

F4 =
4L4 λλ4

1

gs α′1/2
sin θ1 sin θ2 dθ1 ∧ dφ1 ∧ dθ2 ∧ dψ ,

F6 =
4L

gs α′1/2
VolAdS5 ∧ dφ2 .

(B.7)

One can check that, as in [45], for large ρ the fluxes polyforms satisfy

eΦNATDFNATD ≈ eΦATDFATD . (B.8)

The previous relations show that the non-Abelian T-dual solution reduces in the ρ→∞
limit to the Abelian T-dual one. This connection between non-Abelian and Abelian T-

duals was discussed previously in examples where the dualization took place on a round

S3 [44, 45]. Our results show that it extends more generally. It is worth stressing however

that in this case the relation is more subtle globally. Indeed, the relations in eq. (B.4)

identify ξ ∈ [0, 2π] with ψ ∈ [0, 4π]. The reason for this apparent mismatch is that the

dualization on φ2 generates a bolt singularity in the metric, and this must be cured by

setting ψ ∈ [0, 2π], such that the bolt singularity reduces to the coordinate singularity of R2

written in polar coordinates. Once this is taken into account the ranges of both coordinates

also agree. As encountered in [12, 13], the dualization has enforced a Z2 quotient on ψ.

Our Abelian T-dual is thus describing the Klebanov-Witten theory modded by Z2. This is

consistent with the brane set-up that is implied by the quantized charges of the background,

as we now show.

B.2 Quantized charges and brane set-up

The background fluxes of the Abelian T-dual solution support D4 and NS5-brane charges.

The Page charge for the D4 branes is given by:

QD4 =
1

2κ2
10 TD4

∫
M4

F4 =
2

27

L4

π g2
s α
′2 = N4 . (B.9)

– 31 –

164 3.5. The AdS5 non-Abelian T-dual of KW as a N = 1 linear quiver



J
H
E
P
0
9
(
2
0
1
7
)
0
3
8

Imposing the quantization of this charge we find that the radius L is related to the number

of D4 branes through the formula:

L4 =
27

2
π g2

s α
′2N4 . (B.10)

We find a factor of 2 of difference with respect to the original background. This is due to

the change in the periodicity of the ψ direction from [0, 4π] to [0, 2π].

In turn, the charge of NS5 branes is calculated from:

QNS5 =
1

4π2 α′

∫
M3

H3 . (B.11)

As in section 2.2.2, we can define two 3-cycles: Σ3 = [φ2, θ2, ψ] and Σ′3 = [φ2, θ1, φ1]θ2=0.

Taking M3 to be any of these cycles we find that there are two units of NS5, or NS5’, charge.

This is consistent with a brane picture of two alternating NS5, NS5’ branes, transverse to

either of the two 2-cycles S̃2(θ2, ψ), S2(θ1, φ1), located along the compact φ2-direction.

This is the brane set-up discussed in [64], describing the Klebanov-Witten theory modded

by Z2 in Type IIA. The general Zk case is depicted in figure 9 of appendix C.3. Note that,

as discussed in [64], the positions of the branes in the φ2-circle are not specified by the

geometry, so generically we can only think that they define four intervals in the φ2-circle.11

The same number of D4-branes are stretched between each pair of NS5, NS5’ branes since

even if large gauge transformations are required as we pass the value φ2 = πL2/α′, the

D4-brane charge does not change in the absence of F2-flux.

Coming back to section 2.2.3, the relation found there between the central charges

of the non-Abelian and Abelian T-dual solutions helps us understand now the connection

between ρ and φ2 globally. The computation in that section showed that the central charges

agree when ρ ∈ [nπL
2

α′ , (n + 1)πL
2

α′ ] and n is sent to infinity. This is consistent with the

ρ→∞ limit that must be taken at the level of the solutions. Furthermore, it clarifies why

globally the ρ direction is identified, through the replacements in (B.4), with φ2 ∈ [0, 2πL
2

α′ ].

This is just implied by the Z2 quotient enforced by the Abelian T-duality transformation.

C Some field theory elaborations

In this appendix we discuss some aspects of the field theory analysis presented in sec-

tion 4. We start with the calculation of the beta functions and anomalies for the Klebanov-

Witten CFT.

C.1 A summary of the Klebanov-Witten CFT

The field content of the Klebanov-Witten theory consists on a SU(N) × SU(N) gauge

group with bifundamental matter fields A1, A2 and B1, B2, transforming in the (N, N̄)

11In [64] it was argued that the different orderings correspond to different phases in the Kähler moduli

space of the orbifold singularity. This is interpreted in the field theory side in terms of Seiberg duality [79,

80], so the corresponding theories should flow to the same CFT in the infrared.
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Figure 8. The KW quiver.

and (N̄ ,N) representations of SU(N), respectively. This theory is represented by the

quiver depicted in figure 8. The anomalous dimensions of the matter fields are,

γAi = γBi = −1

2
, (C.1)

and thus the physical dimensions and the R-charges are given by,

dim(Ai) = dim(Bi) = 1− 1

4
=

3

4
,

R[A] = R[B] =
1

2
, RΨA = RΨB = −1

2
.

(C.2)

Substituting in eq. (4.1) we see that the β-functions for the couplings g1 and g2 vanish:

βi ∼ 3N − 2N

[
1−

(
− 1

2

)]
= 0 , i = 1, 2 . (C.3)

We can also check the vanishing of the anomaly,

∆θi = 2N + 2 (2N)

(
− 1

2

)
= 0 , (C.4)

where we took into account that the R-charge of the gaugino is 1 while that of the two

Weyl fermions is −1/2.

We hope that this has prepared the reader unfamiliar with these formalities to under-

stand the material in our section 4.

C.2 Central Charge of the N = 2 UV CFT

In this appendix we compute the central charge of the N = 2 quiver associated to the non-

Abelian T-dual of AdS5×S5/Z2, using a-maximization. We obtain that the central charge

is maximized for ε = 1
3 , as for the equal rank quivers considered in [55]. Furthermore,

we show that the result of this calculation leads, consistently, to the holographic central

charge given by eq. (4.20).

We consider the Z2-reflection of the quiver of figure 6 and take σi = +1 for all hyper-

multiplets, including the ones associated with the flavor groups. We then find for the trace

anomalies (N ≡ N6):

TrRε(H) = 2
n−1∑
j=1

TrRε(Hj) +
2∑
i=1

TrRε(Hfi)

= 2N2
n−1∑
j=1

j
(
j + 1

) (
ε σj − 1

)
+ nN2

2∑
i=1

(
ε σfi − 1

)
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= N2

[
2

3
(n3 − n)

(
ε− 1

)
+ 2n(ε− 1)

]
= N2

[
2

3
n3 +

4

3
n

] (
ε− 1

)
≈ 2

3
n3N2

(
ε− 1

)
+O(n) , (C.5)

as well as

TrR3
ε (H) = 2

n−1∑
j=1

TrR3
ε (Hj) +

2∑
i=1

TrR3
ε (Hfi)

= 2N2
n−1∑
j=1

j
(
j + 1

) (ε− 1
)3

4
+ nN2

2∑
i=1

(
ε σfi − 1

)3
4

=
N2

4

[
2

3
(n3 − n)

(
ε− 1

)3
+ 2n

(
ε− 1

)3]
= N2

[
1

6
n3 +

1

3
n

] (
ε− 1

)3 ≈ 1

6
n3N2

(
ε− 1

)3
+O(n) . (C.6)

For the N = 2 vector multiplets (N = 1 vector + chiral adjoint) the non-anomalous R-

charge Rε = R0 + εF/2 is obtained from the R-charge for the gaugino, R0(λ) = 1, plus the

non-anomalous flavor charge of the fermion in the chiral adjoint F(ψj) = (−1)
(
σj−1 +σj

)
,

being R0(ψj) = 0. We thus have:

TrRε(Vj) =
(
N2
j − 1

)(
1− 1

2
ε
(
σj−1 + σj

))
,

TrR3
ε (Vj) =

(
N2
j − 1

)(
1− 1

8
ε3
(
σj−1 + σj

)3)
. (C.7)

These are summed up easily for all σj = +1:

TrRε(V ) = 2
n−1∑
j=1

TrRε(Vj) + TrRε(Vn) =

[
2
n−1∑
j=1

(
j2N2 − 1

)
+
(
n2N2 − 1

)](
1− ε

)
=

[
1

3

(
2n3 + n

)
N2 − (2n− 1)

](
1− ε

)
≈ 2

3
n3N2

(
1− ε

)
+O(n) . (C.8)

The cubic term follows most readily:

TrR3
ε (V ) =

[
1

3

(
2n3 + n

)
N2 − (2n− 1)

](
1− ε3

)
≈ 2

3
n3N2

(
1− ε3

)
+O(n) . (C.9)

We thus see that both linear contributions (C.5) and (C.8) from the hypermultiplets and

vector multiplets cancel at leading order, so that

TrRε ≡ TrRε(H) + TrRε(V ) ≈ O(n) .

Now both a(ε) and c(ε) charges can be computed exactly,

a(ε) =
3

64
(1− ε)

{[
3n3(1 + ε)2 + 2(1 + 3ε)n

]
N2

6 − 2(2n− 1)
(

2 + 3ε(1 + ε)
)}

,

c(ε) =
1

64
(1− ε)

{[
9n3(1 + ε)2 + 2(5 + 9ε)n

]
N2

6 − 2(2n− 1)
(

4 + 9ε(1 + ε)
)}

, (C.10)
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Figure 9. Circular quiver associated to the KW theory modded by Zk, and corresponding brane

set-up. There are N4 D4-branes stretched between p = k NS5-branes, labeled by r = 1, . . . , k (as

for the corresponding hypermultiplets) and q = k NS5’-branes labeled by s = 1, . . . , k. NS5 and

NS5’-branes are represented by transversal black and red dashed lines, respectively.

and a(ε) is maximized for ε = 1/3, yielding the superconformal charges:

aN=2 ≡ a(ε = 1/3) =
1

24

{
(4n3 + 3n)N2

6 − 10n+ 5
}
,

cN=2 ≡ c(ε = 1/3) =
1

6

{
(n3 + n)N2

6 − 2n+ 1
}
. (C.11)

In the long quiver approximation, we recover the holographic result

cN=2 ≈ aN=2 ≈
1

6
n3N2

6 +O
(
n
)
, (C.12)

as expected. It is noteworthy that ε = 1/3 is the value of ε predicted in [55] for N = 2

quivers with nodes of the same rank.

C.3 Central charge of the Klebanov-Witten theory modded by Zk

In this appendix we include, for completeness, the field theory calculation of the central

charge of the Klebanov-Witten theory, using a-maximization. We will center in the more

general case in which the theory is modded by Zk. The computation of the field theoretical

central charge in this example is very illustrative of the a-maximization technique used

throughout the paper.

In this case we have, in the Type IIA description, p = k NS5-branes and q = k NS5’-

branes, and ` = p+ q = 2k hypermultiplets connecting ` N = 1 vector multiplets [64]. The

first and the last nodes are made to coincide, as depicted in Figure 9. We closely follow

the field-theoretical computation of the central charge for the linear quiver proposed in

section 4.3. We just need to take Na = Nb = N4 for the bifundamentals in (4.10) for all

the ` = 2k nodes. This yields the linear contribution for the hypermultiplets:

TrRε(H) ≡
∑̀
j=1

TrRε(Hj) =

k∑
r=1

TrRε(Hr) +

k∑
s=1

TrRε(Hs)

= `N2
4

(
z ε− 1

) z=0
= −2 kN2

4 ,
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where we have used z = (p− q)/`. Similarly, the cubic contribution is given by

TrR3
ε (H) =

`

4
N2

4

(
z
(
ε3 + 3 ε

)
− 3 ε2 − 1

)∣∣∣
z=0

= −k
2
N2

4

(
3 ε2 + 1

)
.

Contributions from N = 1 vector multiplets are computed straightforwardly to be:

TrRε(V ) = TrR3
ε (V ) = `

(
N2

4 − 1
)

= 2 k
(
N2

4 − 1
)
.

We can now use (4.9) to get

c(ε) =
`

128

(
27N2

4

(
1− ε2

)
− 16

)
, (C.13)

which, upon a-maximization for ε = 0, yields the fixed point central charge (for large N4):

c ≈ 27

64
kN2

4 , (C.14)

which coincides, as expected, with the holographic value (given by eq. (2.36) for k = 1).

This expression is valid for any k ≥ 1, i.e. no large ` = 2k limit has been assumed.

Note that in the absence of flavor groups it is not possible to define σ0, σ`, and neither

κ = σ0 + σ`, as we have done for the linear quivers discussed in section 3. Still, the result

in (C.14) agrees with the central charge of a Bah-Bobev type of linear quiver (see eq.

(3.20) in [55]) for κ = 0 and large `. Indeed, even if there is no clear definition for κ in

this case, the uplift of the circular brane set-up is interpreted as M5-branes wrapping a

torus (κ = 0) with minimal punctures, as the gauging of the end flavor groups of the linear

quiver corresponds in M-theory to gluing the two left-over maximal punctures, closing up

the Riemann surface.
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[47] J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds

and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].

[48] B. Assel, C. Bachas, J. Estes and J. Gomis, Holographic duals of D = 3 N = 4

superconformal field theories, JHEP 08 (2011) 087 [arXiv:1106.4253] [INSPIRE].

[49] B. Assel, C. Bachas, J. Estes and J. Gomis, IIB duals of D = 3 N = 4 circular quivers,

JHEP 12 (2012) 044 [arXiv:1210.2590] [INSPIRE].

[50] O. Aharony, L. Berdichevsky, M. Berkooz and I. Shamir, Near-horizon solutions for

D3-branes ending on 5-branes, Phys. Rev. D 84 (2011) 126003 [arXiv:1106.1870] [INSPIRE].

[51] E. D’Hoker, J. Estes, M. Gutperle and D. Krym, Exact half-BPS flux solutions in M-theory.

I: local solutions, JHEP 08 (2008) 028 [arXiv:0806.0605] [INSPIRE].

[52] D. Gaiotto and E. Witten, S-duality of boundary conditions in N = 4 super Yang-Mills

theory, Adv. Theor. Math. Phys. 13 (2009) 721 [arXiv:0807.3720] [INSPIRE].

[53] F. Leblond, R.C. Myers and D.C. Page, Superstars and giant gravitons in M-theory, JHEP

01 (2002) 026 [hep-th/0111178] [INSPIRE].

[54] I.R. Klebanov and E. Witten, Superconformal field theory on three-branes at a Calabi-Yau

singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [INSPIRE].

[55] I. Bah and N. Bobev, Linear quivers and N = 1 SCFTs from M5-branes, JHEP 08 (2014)

121 [arXiv:1307.7104] [INSPIRE].

[56] E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500

(1997) 3 [hep-th/9703166] [INSPIRE].

[57] D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].

[58] I. Bah, C. Beem, N. Bobev and B. Wecht, AdS/CFT dual pairs from M5-branes on Riemann

surfaces, Phys. Rev. D 85 (2012) 121901 [arXiv:1112.5487] [INSPIRE].

[59] I. Bah, C. Beem, N. Bobev and B. Wecht, Four-dimensional SCFTs from M5-branes, JHEP

06 (2012) 005 [arXiv:1203.0303] [INSPIRE].

[60] F. Benini, Y. Tachikawa and B. Wecht, Sicilian gauge theories and N = 1 dualities, JHEP

01 (2010) 088 [arXiv:0909.1327] [INSPIRE].

[61] I. Bah and B. Wecht, New N = 1 superconformal field theories in four dimensions, JHEP 07

(2013) 107 [arXiv:1111.3402] [INSPIRE].

[62] A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional

gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].

[63] K. Dasgupta and S. Mukhi, Brane constructions, conifolds and M-theory, Nucl. Phys. B 551

(1999) 204 [hep-th/9811139] [INSPIRE].

[64] A.M. Uranga, Brane configurations for branes at conifolds, JHEP 01 (1999) 022

[hep-th/9811004] [INSPIRE].

[65] J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Supersymmetric AdS5 solutions of

M-theory, Class. Quant. Grav. 21 (2004) 4335 [hep-th/0402153] [INSPIRE].

– 39 –

172 3.5. The AdS5 non-Abelian T-dual of KW as a N = 1 linear quiver



J
H
E
P
0
9
(
2
0
1
7
)
0
3
8

[66] I.R. Klebanov, D. Kutasov and A. Murugan, Entanglement as a probe of confinement, Nucl.

Phys. B 796 (2008) 274 [arXiv:0709.2140] [INSPIRE].

[67] S.S. Gubser, Einstein manifolds and conformal field theories, Phys. Rev. D 59 (1999) 025006

[hep-th/9807164] [INSPIRE].

[68] R.C. Myers, Dielectric branes, JHEP 12 (1999) 022 [hep-th/9910053] [INSPIRE].

[69] K.A. Intriligator and B. Wecht, The exact superconformal R symmetry maximizes a, Nucl.

Phys. B 667 (2003) 183 [hep-th/0304128] [INSPIRE].

[70] D. Anselmi, D.Z. Freedman, M.T. Grisaru and A.A. Johansen, Nonperturbative formulas for

central functions of supersymmetric gauge theories, Nucl. Phys. B 526 (1998) 543

[hep-th/9708042] [INSPIRE].

[71] J. Borlaf and Y. Lozano, Aspects of T duality in open strings, Nucl. Phys. B 480 (1996) 239

[hep-th/9607051] [INSPIRE].

[72] Y. Tachikawa and B. Wecht, Explanation of the central charge ratio 27/32 in

four-dimensional renormalization group flows between superconformal theories, Phys. Rev.

Lett. 103 (2009) 061601 [arXiv:0906.0965] [INSPIRE].

[73] V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Exact Gell-Mann-Low

function of supersymmetric Yang-Mills theories from instanton calculus, Nucl. Phys. B 229

(1983) 381 [INSPIRE].

[74] N. Arkani-Hamed and H. Murayama, Holomorphy, rescaling anomalies and exact β-functions

in supersymmetric gauge theories, JHEP 06 (2000) 030 [hep-th/9707133] [INSPIRE].
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Abstract

We initiate the classification of supersymmetric solutions of type II supergravity on R1,2 ×S3 ×M4. We 
find explicit local expressions for all backgrounds with either a single Killing spinor or two of equal norm, 
up to PDE’s. We show that the only type II AdS4 × S3 solution is the known N = 4 AdS4 background 
obtained from the near-horizon limit of intersecting D2–D6 branes. Various known branes and intersecting 
brane systems are recovered, and we obtain a novel class of R1,2 × S2 × S3 solutions in IIA.
© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The advent of the AdS-CFT correspondence has led to significant interest in the construc-
tion of Anti-de Sitter string backgrounds in various dimensions and with various amounts of 
supersymmetry. One of the most famous AdS4 backgrounds is the AdS4 × CP3 solution. The 
discovery of this solution far pre-dates the correspondence [1], however it was not realised how 
it fit into the holographic paradigm until the works of [2] and [3]. A plethora of other such AdS4
classes and explicit examples have been found using (in some cases vastly) different methods 

E-mail addresses: nmacpher@sissa.it (N.T. Macpherson), monteroaragon@uniovi.es (J. Montero), 
daniel.prins@cea.fr (D. Prins).
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and exhibiting different amounts of supersymmetry: consider the very incomplete list of [4–14]
for N = 1, [15–21] for N = 2, [22] for N = 3 and [23–26] for N = 4. Solutions with N > 4
where recently classified in [27], they are very restricted.

One of the more prominent methods of finding AdSd backgrounds is to find bosonic solutions 
with an AdSd factor to the supersymmetry constraints, which also satisfy the Bianchi identities. 
As a consequence of various integrability theorems, such solutions automatically solve the equa-
tions of motions. The Killing spinor equations reduce to constraints on the internal manifold, 
which can then be solved by means of G-structure and generalised geometrical techniques. The 
literature usually approaches this problem by assuming an AdSd from the start. However we are 
also interested in solutions of relevance to flux compactifications and the broader definition of 
holography that includes non-conformal solutions. As such we shall consider assume Minkowski 
factor, in this case Mink3, so that our results are more broadly applicable.

Finding Minkowski solutions using G-structure techniques [28–31] or otherwise is by now 
quite a mature program, see [32–35] for some recent examples. Usually the aim is to preserve 
minimal or even no supersymmetry for phenomenological reason which makes the problem in 
general quite hard. We shall take inspiration from [36] and assume the existence of an S3 factor 
in the metric. This will necessarily mean that we are dealing with at least N = 2 which is of less 
phenomenological interest, however with these solutions classified it should then be possible to 
systematically break some (or even all) of this symmetry by deforming the S3.

In this paper we classify all supersymmetric solutions of Type II supergravity on R1,2 × S3 ×
M4, under the assumption that the seven-dimensional internal Killing spinors have equal norms 
and that the physical fields of the solution respect the ISO(1, 2) ×SO(4) isometry subgroup. Our 
classification is quite detailed, going as far as to give explicit local expressions the metric, fluxes 
and dilaton in terms of simple (Laplace-like) PDE’s. As we shall see, solutions in this class are 
generically N = 2, from the Minkowski perspective, and support a SU(2) R-symmetry realised 
geometrically as one factor of the SO(4) � SU(2)+ × SU(2)− isometry group manifold of S3

– the remaining SU(2) factor is a “flavour” under which the Killing spinors are uncharged.1

This may sound strange as there is no 3d superconformal algebra with SU(2)R , but this only 
matters for solutions where R1,2 is part of a AdS4 factor so that SO(2, 3) is realised. Ultimately 
our results end up side stepping this issue as in general their is either an enhancement of the 
R-symmetry to SO(4) via the emergence of an additional S2,3 factor, or an enhancement of 
the Minkowski factor to dimensions where SU(2)R is a necessary part of the superconformal 
algebra.

The classification recovers various well-known intersecting brane systems listed in [40] and 
some of their U-duals and some of their S-duals. New classes we find include a pure NS R1,2 ×
S3 × S2 × R vacuum, its U-dual in IIB, the cone over R1,2 × S3 × S3, and a novel class of 
R1,2 × S2 × S3 × �2 solutions in massless and massive IIA.

One of our main results is that the only compact AdS4 × S3 × M3 solution of type II su-
pergravity is the known N = 4 solution of type IIA on a foliation of AdS4 × S3 × S2 over an 
interval which is the near-horizon limit of the D2–D6 brane system. The required SO(4)R is 
realised with one SU(2) from each sphere, and not the S3 alone. Indeed this is to be expected as 
if the 3-sphere does realise two SU(2) R-symmetries there would be two sets of N = 2 spinors 
transforming in the (2, 1) and (1, 2) of SO(4) – there is no N = 4 super-conformal algebra in 3d 

1 As such all classes we present are compatible with performing non-Abelian T-duality [45–47] on this SU(2) whilst 
preserving SU(2)R [48].
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with Q-generators that transform in this fashion. So it seems likely that the only avenue left open 
for holographic duals of N = 4 is to seek AdS4 × S2 × S2 solution like [23,24], but in massive 
IIA.

Our other main result is the discovery of a new class of N = 4 solutions on R1,2 × S2 ×
S3 × �2 preserving an SO(4) R-symmetry but no AdS4. These generically have all possible IIA 
fluxes turned on and can be divided into cases either in massless or massive IIA at which point 
solutions are in one to one correspondence with a single PDE on σ2. In particular the massless 
solutions are governed by a 3d cylindrical Laplace equation with axial symmetry. These classes 
look very promising both for finding compact Mink3 solutions, but also possibly solutions that 
asymptote to AdS.

Let us now describe the outline of the paper: in order to solve the supersymmetry constraints, 
we will make use of the reformulation of the Killing spinor equations in terms of so-called 
pure spinor equations. Such pure spinor equations were first used for backgrounds of the form 
M10 = R1,3 × M6, where it was shown that they are related to integrability constraints of gen-
eralised almost complex structures on the internal space M6 [30]. For backgrounds of the form 
M10 = R1,2 × M7, the pure spinor equations were constructed in [31] (see also [37]). Next, we 
decompose M7 = S3 × M4, leading to pure spinor equations on the internal M4. We explain 
this setup in detail in section 2. The resulting supersymmetry constraints vary significantly, de-
pending on whether the theory at hand is type IIA or type IIB. We will solve the supersymmetry 
constraints as well as the Bianchi identities for IIB backgrounds in section 3 and for IIA back-
grounds in section 4. In section 5, we then show that there is a unique solution with a warped 
AdS4 factor, obtained from the D2–D6 system. In addition to the case where the internal Killing 
spinors have equivalent norm, in section 6 we examine all backgrounds in the case where one 
of the Killing spinors vanishes, i.e., ε2 = 0. In this case, there is no need to distinguish between 
IIA and IIB; we demonstrate that all such backgrounds are pure NSNS and give the solutions. 
In the appendix, we discuss conventions and identities used, a mild extension of the 3 + 7 pure 
spinor equation construction (including the non-equivalent norm case), and a discussion on sim-
ilar backgrounds from an M-theory perspective.

2. Mink3 with an S3 factor

We are interested in solutions to type II with at least a three-dimensional external Minkowski 
component, with the fluxes respecting the three-dimensional Poincaré invariance:

ds2 = e2Ads2(R1,2) + ds2(M7) , F = f + e3AVol3 ∧ �7λ(f ) , (2.1)

where the RR flux f is a polyform on M7 and the warp factor A and the dilaton � are functions 
on M7.2 Moreover, we take the NSNS 3-form H to be internal as well. The Killing spinors for 
N = 1 supersymmetric solutions decompose as

ε1 =
(

1
−i

)
⊗ ζ ⊗ χ1 , ε2 =

(
1
±i

)
⊗ ζ ⊗ χ2 , (2.2)

where ζ is a Majorana spinor of Spin(1, 2) and χ1,2 are Majorana spinors of Spin(7) and 
where the upper (lower) signs are taken in IIA (IIB). Following [31], we define two real seven-
dimensional bispinors �± in terms of χ1,2:

2 We work in the democratic formalism. Other conventions can be found in appendix A.
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�+ + i�− = 8e−Aχ1 ⊗ χ
†
2 , (2.3)

where the subscript +/− refers to the even/odd forms in the decomposition of the polyform. The 
conditions for unbroken N = 1 supersymmetry are equivalent to

dH (e2A−��±) = 0 , (2.4a)

dH (e3A−��∓) + e3A �7 λ(f ) = 0 , (2.4b)

(�± ∧ λ(f ))
∣∣
Top = 0 , (2.4c)

as long as the norms of spinors χ1,2 are equal,3 which leads to

|χ1|2 = |χ1|2 = eA (2.5)

The assumption of equal norm is a global requirement for AdS4 (see footnote 6 in section 5), 
and a local requirement for the existence of calibrated D-branes or O-planes (see section 6), 
however this is not a requirement in general – rather we view this as a well-motivated simplifying 
assumption.

Next, we require that the internal space can be decomposed locally as M7 = S3 × M4, and in 
order to ensure that compactification leads to an SO(4) global symmetry we insist that the fluxes 
respect the SO(4) isometry. As a result, the metric and fluxes decompose further as

ds2(M7) = e2Cds2(S3) + ds2(M4) , f = G∓ + e3CVol(S3) ∧ G± ,

H = H3 + H0e
3CVol(S3) . (2.6)

We decompose the 7d spinors in the same fashion in terms of a single4 pseudoreal (i.e., (ξ c)c =
−ξ ) Killing spinor ξ on S3, and two pseudoreal spinors η1,2 on M4:

χi = e
A
2 (ξ ⊗ ηi + ξc ⊗ ηc

i ) = e
A
2 ξa ⊗ ηa

i , i = 1,2 (2.7)

which is the most general parameterisation consistent with an S3 ×M4 product and the Majorana 
condition.5 Note that we do not restrict the Spin(4) spinors ηi to be chiral and we normalise 
η

†
1,2η1,2 = 1. The Killing spinors on S3 satisfy the Killing spinor equation

∇αξ = 1

2
iνσαξ , ν = ±1 , (2.8)

which preserves two supercharges for each of ν = ±1. We will not make a choice of ν so we can 
establish whether any solutions are independent of this choice – the S3 of such a solution would 
preserve 4 supercharges. As explained in Appendix C a spinor on S3 defines a doublet

3 In [31], [37] an additional constraint that was imposed in order to derive (2.4) was that the external component of 
the NSNS 3-form flux is trivial; unlike in four dimensions, this is not enforced by Poincaré invariance. It turns out that 
this second assumption is redundant though, as is shown in appendix D: if |χ1|2 = |χ2|2 and spacetime does not admit a 
cosmological constant, then supersymmetry enforces that the external NSNS flux vanishes.

4 As explained in Appendix C, there are two independent types of Killing spinors on S3, ξ+ and ξ− – however they 
cannot be mapped to each other using the SO(4) invariants of the fluxes or the Killing spinor equations. This is all that 
appears when one decompose M7 = S3 × M4, so if one were to include terms like ξ+ ⊗ η+ and ξ− ⊗ η− then reduced 
the 7d spinor conditions to 4d ones you would find that η± never mix. So setting one of η± to zero excludes no solutions 
in our analysis.

5 One might imagine it was possible to construct a more general 7d spinor from two 4d spinors like ξ ⊗ η + ξc ⊗ η̃. 
But if one then adds the Majorana conjugate to this the resulting spinor can be put in the form of (2.7) by redefining η, η̃.
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ξa =
(

ξ

ξc

)
(2.9)

which is charged under one SU(2) factor of SO(4) = SU(2)+ × SU(2)−, depending on the 
sign of ν – ξa is a singlet under the action of the second SU(2). As such, a generic solution 
with Mink3 × S3 will have an R-symmetry SU(2)R and an additional global flavour symmetry 
SU(2)F . Such solutions preserve at least N = 2 supersymmetry from the 3d perspective, so 4 
real supercharges – indeed, the 10d Killing spinors may be written as

ε1 =
(

1
−i

)
⊗ ζ a ⊗ (ξa ⊗ η1+ξac ⊗ η1c) , ε2 =

(
1
±i

)
⊗ ζ a ⊗ (ξa ⊗ η2+ξac ⊗ η2c) ,

where ζ a is a doublet of Killing spinors on R1,2, that allow the 10d spinors to be invariant 
under SU(2)R transformations. However we only need to solve an N = 1 sub-sector, because 
the part of the Killing spinor which couples to ζ 1 is mapped to the part coupling to ζ 2 under the 
action of SU(2)R – so if you solve one part, the other is guaranteed. If a solution ends up being 
independent of ν then there is a copy of (2.2) for each sign and supersymmetry is doubled to 
N = 4 – there are two SU(2) R-symmetries, but they do not appear as a product so do not form 
SO(4)R – as we shall see, this only happen in a small number of special cases.

Using the gamma matrix decomposition (A.2), the seven-dimensional bispinor (2.3) decom-
poses as

χ1 ⊗ χ
†
2 = (ξa ⊗ ξb)+ ∧ (ηa ⊗ ηb) + (ξa ⊗ ξb)+ ∧ (γ̂ ηa ⊗ ηb). (2.10)

Here, γ̂ is the four-dimensional chirality matrix and the ± subscripts again refer to even and odd 
form components. We see that the components are in fact matrices and that the seven-dimensional 
bispinor is constructed as the trace of the product of the components.

The S3 component leads to the bispinor matrix

ξa ⊗ ξb† = 1

2

(
(1 − ie3CVol(S3)) + 1

2

(
eCKi − ν

2
ie2CdKi

)
(σ i)ab

)
, (2.11)

where Ki is a vielbein defining a trivial structure on S3 (see appendix A).
The M4 component leads to the bispinor matrix

(ηa
1 ⊗ η

b†
2 )± =

(
ψ1± ψ2±

∓(ψ2±)∗ ±(ψ1±)∗
)

, (γ̂ ηa
1 ⊗ η

b†
2 )± =

(
ψ1

γ̂± ψ2
γ̂±

∓(ψ2
γ̂±)∗ ±(ψ1

γ̂±)∗

)
,

(2.12)

where

ψ1 = 4η1 ⊗ η2†, ψ2 = 4η1 ⊗ η2c†, ψ1
γ̂

= 4γ̂ η1 ⊗ η2†, ψ2
γ̂

= 4γ̂ η1 ⊗ η2c† (2.13)

Since the matrix entries are somewhat involved, we refer to appendix B for details. Plugging both 
components (2.11), (2.12) into the seven-dimensional bispinors (2.10), it follows that

�+ = Reψ1+ − e3CVol(S3) ∧ Imψ1
γ̂− + eC

2
(K1 ∧ Reψ2

γ̂− + K2 ∧ Imψ2
γ̂− + K3 ∧ Reψ1

γ̂−),

− e2C

4
(K1 ∧ K2 ∧ Imψ1+ + K1 ∧ K3 ∧ Reψ2+ + K2 ∧ K3 ∧ Imψ2+), (2.14)
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�− = Imψ1− − e3CVol(S3) ∧ Reψ1
γ̂+ + eC

2
(K1 ∧ Imψ2

γ̂+ − K2 ∧ Reψ2
γ̂+ + K3 ∧ Imψ1

γ̂+),

+ e2C

4
(K1 ∧ K2 ∧ Reψ1− − K1 ∧ K3 ∧ Imψ2− + K2 ∧ K3 ∧ Reψ2−).

At this point, the IIA and IIB supersymmetry equations diverge, and we shall relegate their 
explicit form to the relevant sections.

With our set up, a solution to the supersymmetry equations is a solution to the equation 
of motion if and only if it satisfies the Bianchi identities [4] [38] [39]. These are given by 
dH F = dH = 0 away from localised sources. By definition, a localised (magnetic) source man-
ifests itself in the Bianchi identity of some field strength F as dF = Qδn(x) and hence in such 
cases F is discontinuous. Loosely speaking, a localised source corresponds physically to an 
extended object (such as a brane) located at a submanifold of the ten-dimensional spacetime 
S ⊂ M10 which is pointlike in some of the local coordinates. The standard approach to obtaining 
backgrounds, which we follow as well, is to first solve the supersymmetry equations by introduc-
ing local coordinates, and then afterwards determine the physically sensible range of these local 
coordinates by examining the obtained geometry and fluxes. The presence of localised sources 
is signified by discontinuities of not just the fluxes, but of the spacetime geometry as well, pre-
cisely at the location of the sources. Therefore, it is possible to obtain solutions with localised 
sources even when making use of the Bianchi identities with no sources: one examines possible 
discontinuities in the geometry and fluxes and determines whether or not such discontinuities 
are associated with localised sources or not by comparing them with the divergent behaviour of 
known extended objects.

Making use of the flux decomposition (2.1), (2.6), the Bianchi identities thus reduce to

dH3

(
e3A+3C �4 λ(G±)

) = dH3

(
e3C �4 λ(G∓)

) = 0 ,

dH3(G±) = dH3

(
e3CG∓

) = 0 ,

dH3 = 0 .

(2.15)

This is after imposing H0 = 0, which turns out to be a requirement for every solution to the 
supersymmetry equations that we obtain.

2.1. Summary of obtained backgrounds

As the rest of the paper is somewhat technical, let us summarise our results here. We find a 
number of well-known backgrounds, as well as some new ones.

In type IIB with internal Killing spinors of equal norm, we find:

1. The intersecting D3–D7 system with metric (3.27), fluxes (3.25) and scalar field constraints 
(3.26).

2. The D5-brane with metric (3.37), fluxes (3.35) and scalar field constraints (3.36).
3. A generalization of the D5-brane generated by U-duality. The metric is given by (3.43), the 

fluxes by (3.41), scalar field constraints by (3.42).
4. A new background on the cone over R1,2 × S3 × S3

sq, with S3
sq a generically squashed three-

sphere admitting an SU(2) × U(1) isometry group. For the unsquashed limit, the metric is 
given by (3.59), the fluxes by (3.57), the scalar field constraints by (3.58). In the generic 
squashed case, the metric and dilaton are given by (3.75), the fluxes by (3.74). We note that 
the more general squashed case can be obtained from the unsquashed case by a duality chain.
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In type IIA with internal Killing spinors of equal norm, we find:

1. The intersecting D4–D8 system with metric (4.14), fluxes (4.12) and scalars constraints 
(4.11), (4.13).

2. The intersecting D2–D6 system with metric (4.24), fluxes (4.22) and scalar constraints 
(4.21), (4.23).

3. A generalization of the D4–D8 system generated by U-duality. The metric is given by (4.30), 
the fluxes by (4.29), and scalar constraints by (4.27).

4. A class of new backgrounds. The metric contains an R1,2 × S3 × S2 factor, with various 
warpings, and is given by (4.42). The warp factors are constrained by various PDE, given 
in (4.43). In general, all fluxes are turned on and are given by (4.44). This new class of 
backgrounds contains a subset with a U(1) isometry. In this case, T-dualising along the 
isometry direction leads to the new IIB backgrounds outlined above, with generic squashing.

In addition, we find two more backgrounds when setting ε2 = 0. These backgrounds are pure 
NS, and as such, can be found in both type IIA and type IIB. We find:

1. The NS5-brane, with metric (6.18), flux (6.16) and the scalar constraints (6.17).
2. A pure NS background on R1,2 ×R ×S3 ×S3, dual to the new (unsquashed) IIB background. 

The metric is given by (6.22), the flux by (6.21). All scalars are determined up to constant 
factors.

3. Mink3 with an S3 factor in IIB

The type IIB supersymmetry equations are obtained by plugging the decomposed seven-
dimensional bispinors (2.14) into the seven-dimensional supersymmetry constraints (2.4). This 
leads to the following constraints on the four-dimensional bispinors

dH3(e
2A−�Reψ1+) = 0 , (3.1a)

dH3(e
3A+2C−�ψ2−) + 2iνe3A+C−�ψ2

γ̂+ = 0 , (3.1b)

dH3(e
2A+2C−�ψ2+) + 2iνe2A+C−�ψ2

γ̂− = 0 , (3.1c)

dH3(e
3A+2C−�Reψ1−) − 2νe3A+C−�Imψ1

γ̂+ = 0 , (3.1d)

dH3(e
2A+2C−�Imψ1+) + 2νe2A+C−�Reψ1

γ̂− = 0 , (3.1e)

dH3(e
2A+3C−�Imψ1

γ̂−) + e2A+3C−�H0Reψ1+ = 0, (3.1f)

while the fluxes are determined by

dH3(e
3A−�Imψ1−) + e3A �4 λ(G+) = 0 , (3.2a)

dH3(e
3A+3C−�Reψ1

γ̂+) − e3A+3C−�H0Imψ1− + νe3A+3C �4 λ(G−) = 0 (3.2b)

and must additionally satisfy the pairing equation(
Imψ1

γ̂− ∧ λ(G−) − Reψ1+ ∧ λ(G+)

)∣∣∣∣
4
= 0 . (3.3)
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In order to solve these, we will first examine the 0-form conditions. These are given by

(ψ2
γ̂
)0 = (Imψ1

γ̂
)0 = H0(Reψ1

γ̂
)0 = 0 . (3.4)

We solve the first two of these in Appendix B, which leads to a spinor ansatz depending on 6 real 
functions with support on M4

α, a1, b1, λ1, λ2 , λ3 (3.5)

subject to the constraint

a2
1 + b2

1 + λ2
1 + λ2

2 + λ2
3 = 1. (3.6)

The third 0-form constraint, which is unique to IIB, still needs to dealt with. After making use of 
(B.12), it reduces to

H0(a1 cos
α

2
+ b1 sin

α

2
) = 0 . (3.7)

Here, as well as in IIA, the solutions depend drastically on the behaviour of α. We can distinguish 
between three different cases: α = 0, α = 1

2π , and generic α ∈ (0, π), α 
= 1
2π . Let us reiterate 

that we introduced α in (B.5) by defining

η1 = cos
(α

2

)
η + sin

(α

2

)
γ̂ η , (3.8)

where η is a locally defined non-chiral spinor, where the chiral components are normalised. Note 
that the non-chirality is crucial: it ensures that η can be used to define the local trivial structure 
(i.e., the vielbein) via (B.3). In the case that α = 0, the 4d internal Killing spinors η1 = η are 
such that the chiral components of η1 have equal norm. In the case that α = π/2, we see that 
η1 becomes chiral. It turns out that we can treat this case together with α 
= 0, but find no such 
solutions. Thus we separate our solutions into two branches.

Branch I: Here α = 0. The only non-trivial zero form is a1H0 = 0, which a priori can be 
solved in two ways. However, we shall see in the next section that only H0 = 0 is consistent with 
the higher form conditions. In order to solve (B.6) we parametrise

a1 = sinβ, b1 = cosβ sin δ, λ1 = y1 cosβ cos δ, λ1 = y2 cosβ cos δ, λ3 = y3 cosβ cos δ,

(3.9)

with

y1 = sin θ cosφ, y2 = sin θ sinφ, y3 = cos θ. (3.10)

Branch II: Here 0 < α < π . Note that α = π is equivalent to α = 0, which is easiest to see 
by sending η → γ̂ η in (B.5). We choose to parametrise

a1 = cosβ sin(δ − α

2
) , b1 = cosβ cos(δ − α

2
)

λ1 = − cosβ cos δy1 , λ2 = − sinβy3

λ3 = − sinβy2

where yi is defined in (3.10). This ensures (B.6) and all but the first equation of (3.7) are solved, 
which becomes

H0 cosβ sin δ = 0 . (3.12)
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3.1. Branch I: solutions with α = 0

In order to solve branch I, it is convenient to first examine a number of lower form conditions 
that follow from (3.1). To do this it is useful to first rotate the canonical frame of (B.3) such that

v1 → sinφw2 + cosφ(cos θv1 + sin θ(cos δw1 − sin δv2))

v2 → cos δv2 + sin δw1

w1 → cos θ(cos δw1 − sin δv2) − sin θv1

w2 → cosφw2 − sinφ(cos θv1 + sin θ(cos δw1 − sin δv2)) .

(3.13)

Making use of these, one finds that the supersymmetry equations imply

sinβH0 = 0 , (3.14a)

d(e2A+2C−� cosβ cos δ) − 2νe2A+C−� cosβv2 = 0 , (3.14b)

d(e2A+3C−� sinβ(cos δv2 + sin δw1)) − e2A+3C−�H0 cosβ cos δv1 ∧ w2 = 0, (3.14c)

cosβ(eC cos δdθ + 2ν sin δv1) = cosβ(eC cos δ sin θdφ − 2ν sin δw2) = 0 , (3.14d)

d(e3A+2C−� sinβ(cos δw1 − sin δv2)) + 2νe3A+C−�(sinβv2 ∧ w1 + sin δ cosβv1 ∧ w2)

+ e3A+2C−� cosβ cos δ(dθ ∧ w2 + sin θdφ ∧ v1) = 0, (3.14e)

which is not a compete list. The first thing to establish is how to solve (3.14a) – if we set sinβ = 0, 
one needs to set cos δ = 0 to solve (3.14c), but since ν = ±1, (3.14b) leads to a contradiction.

The next conditions we consider are (3.14d). For cosβ 
= 0 we see that either sin δ = dθ =
dφ = 0, or 0 < sin δ < π

2 in which case (θ, φ) define local coordinates on a 2-sphere. We are 
ignoring cosβ = 0 because, as should be clear from, (3.9), this is a subcase of sin δ = dθ = dφ =
0. Let us now prove that 0 < sin δ < π

2 is not possible: Since H0 = 0 we can solve (3.14b)–(3.14c)
by introducing local coordinates x and ρ = e2A+2C−� cosβ cos δ such that

νv2= 1

2

√
cos δ

ρ cosβ
e−A+ �

2 dρ, w1=
√

cosβ cos3/2 δ

2νρ3/2 sin δ
eA− �

2 (2ν cotβdx−secβe−2A+�ρdρ).

We can also rewrite (3.14e) as

d(e3A+2C−� sinβ(cos δw1 −sin δv2))+2νe3A+C−�(sinβv2 ∧w1−sin δ cosβv1 ∧w2) = 0,

using (3.14d). The key point here is that v2, w1 only have legs in (ρ, x) while v1, w2 sit 
orthogonal to this with legs in (θ, φ) only. This means that the equation above, cannot be solved 
as there is a Vol(S2) term whose coefficient is non-vanishing. Thus we can conclude in general 
that sin δ = dθ = dφ = 0. Plugging this back into (4.1), one finds that nothing depends on the 
specific values these parameters take so we can set

H0 = θ = φ = δ = 0 , (3.15)

without loss of generality, leaving one undetermined function β .
We are now ready to write the supersymmetry conditions that follow when α = 0, however 

we find it helpful to perform a second rotation of the canonical vielbein by considering
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v1 + iw2 → e−iβw, v2 − iw1 → −iv, (3.16)

to ease presentation. The necessary and sufficient conditions for supersymmetry in the α = 0
branch are

H0 = d(e2A−� sinβ) = d(eA+C− 1
2 �

√
cosβ) − νeA− �

2
√

cosβv2

= d(e2A+3C−� sinβv2) = 0 ,

d(e3A+2C−�w) + 2νe3A+C−�w ∧ v2

= d(e3A+2C−� sinβv1) + 2νe3A+C−� sinβv1 ∧ v2 = 0 ,

d(e2A+2C−�v1 ∧ w) − 2νe2A+C−�v1 ∧ w ∧ v2 = 0 ,

d(e2A+2C−� sinβw1 ∧ w2) − 2νe2A+C−� sinβw1 ∧ w2 ∧ v2 + e2A+2C−� cosβH3 = 0 ,

H3 + 2β ∧ w1 ∧ w2 = d(e4A−� cosβ) ∧ w1 ∧ w2 ∧ v2 = 0 ,

d(e3A−� cosβv1) − d(e3A−� sinβv1 ∧ w1 ∧ w2) + e3A−� cosβv1 ∧ H3 − e3A �4 λ(G+)

= 0 ,

d(e3A+3C−� cosβv1 ∧ v2) − e3C+3A �4 λ(G−) = 0 ,(
(sinβ + cosβw1 ∧ w2) ∧ v2 ∧ λ(G−) − (sinβ + cosβw1 ∧ w2) ∧ λ(G+)

)∣∣∣∣
4
= 0.

(3.17)

We can simplify this system further, but not without making assumptions about β . We now 
proceed to study the systems that follow from different values of β , we find that the physical 
interpretation is quite different in each case.

3.1.1. Subcase: β = 0
Upon setting β = 0 in (3.17) one can show that the supersymmetry conditions reduce to

H3 = H0 = d(e−�) ∧ w1 ∧ w2 = d(e−4A) ∧ v2 ∧ w1 ∧ w2 = 0 , (3.18a)

d(e−Av1) ∧ w = d(eA+C− 1
2 �) − νeA− 1

2 �v2 = d(eAw) = 0 , (3.18b)

e3A �4 λ(G+) = d(e3A−�v1), e3A+3C �4 λ(G−) = d(e3A+3C−�v1 ∧ v2), (3.18c)

λ(G−) ∧ v2 ∧ w1 ∧ w2 − λ(G+) ∧ w1 ∧ w2 = 0. (3.18d)

We can solve (3.18b) by using it to define a vielbein in terms of local coordinates ψ, x1, x2 and

ρ = eA+C− 1
2 � (3.19)

such that

v1 = eA(dψ + V ) , v2 = νe−A+ 1
2 �dρ , w = e−A(dx1 + idx2) ,

V = f1(x1, x2)dx1 + f2(x1, x2)dx2 .
(3.20)
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From (3.18a) we see there is no NSNS flux, ∂ψ is an isometry and A = A(ρ, x1, x2), � =
�(x1, x2). We now have enough information to calculate the fluxes. First we find

�4G− = −eA
(
∂x1(e

−�)w1 + ∂x2(e
−�)w2

) ∧ v1 ∧ v2 − e3A−�
(
∂x1f2 − ∂x2f1

)
v1

�4G+ = −e3A
(
∂x1(e

4A−�)w1 ∧ v2 + ∂x2(e
4A−�)w2 ∧ v2 + νe− 1

2 �∂ρe4A−�v2 ∧ v1

)
− e3A−� (∂1f2 − ∂2f1)w1 ∧ w2 .

(3.21)

We can then use coordinate dependence of the physical fields and local expression for the vielbein 
(3.20) to take the Hodge dual in (3.18c) arriving at

G− = (∂x2f1 − ∂x1f2)e
4A−�(dψ + V ) + ∂x2(e

−�)dx1 − ∂x1(e
−�)dx2, (3.22)

G+ = −νe3A− 3
2 �

(
∂x2(e

−4A+�)dx1 ∧ dρ − ∂x1(e
−4A+�)dx2 ∧ dρ

− e−�∂ρ(e−4A+�)dx1 ∧ dx2 − νe�(∂x2f1 − ∂x1f2)(dψ + V ) ∧ dρ

)
. (3.23)

Plugging this into (3.18d) we find (∂x2f1 − ∂x1f2) = 0 which mean that V is closed and so we 
can locally fix

V = 0 , (3.24)

with a shift ψ → ψ − η for dη = V , without loss of generality. Taking this into account the 
ten-dimensional fluxes are

F1 = ∂x2(e
−�)dx1 − ∂x1(e

−�)dx2, F5 = dψ ∧ d(e4A−�) ∧ Vol3 (3.25)

− νρ3
(

∂x2(e
−4A+�)dx1 ∧ dρ − ∂x1(e

−4A+�)dx2 ∧ dρ − e−�∂ρ(e−4A+�)dx1 ∧ dx2

)

∧ Vol(S3).

The final thing we need to do is impose the Bianchi identities, which away from localised sources 
rise to the PDEs

(∂2
x1

+ ∂2
x2

)e−� = 0 ,
e−�

ρ3 ∂ρ(ρ3∂ρe−4A+�) + (∂2
x1

+ ∂2
x2

)(e−4A+�) = 0 . (3.26)

The local form of the metric is then

ds2 = 1√
f H

ds2(R1,3) +
√

H

f

(
dρ2 + ρ2ds2(S3)

)
+ √

f H
(
dx2

1 + dx2
2

)
,

H = e−4A+� , f = e−�

(3.27)

This corresponds to the intersecting D3–D7 brane system, where the D3-branes are embedded in 
the D7-branes [40].
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3.1.2. Subcase: β = π
2

Setting β = π
2 in (3.17) leads to the following necessary and sufficient conditions for unbroken 

supersymmetry

d(e2A−�) = d(e2A+3C−�v2) = H3 = H0 = G− = 0 , (3.28a)

d(e3A+2C−�ui) + 2νe3A+C−�ui ∧ v2 = 0 , (3.28b)

d(e2A+2C−�εijkuj ∧ uk) − 2νe2A+C−�εijkuj ∧ uk ∧ v2 = 0 , (3.28c)

e3A �4 λ(G+) = d(e3A−�v1 ∧ w1 ∧ w2). (3.28d)

Here we have introduced the notation

u = (v1,w1,w2), (3.29)

both to ease notation and to stress that the vielbeine ui obey a cyclic property. Exploiting this 
property will be very helpful in solving this system and other systems we shall encounter which 
mirror this behaviour, so we will be very explicit in our derivation here, but less so elsewhere. 
The first thing to note is that the combination (3.28c)i + e−Aεijkuj∧(3.28b)k leads to

εijk

(
d(e2A+C− 1

2 �) − νe2A− 1
2 �v2

)
∧ uj ∧ uk = 0 . (3.30)

This implies that the 1-form in large brackets is zero. This can be seen by writing it as Xju
j +

X0v2 for some functions Xj , noting that the vielbeine u1,2,3 are independent, and then consider-
ing the resulting constraints for i = 1, 2, 3. Next by examining (3.28c)i + e−Auj∧(3.28b)k and 
(3.28c)i − e−A∧(3.28b)j ∧ uk for cyclic permutations of (i, j, k) = (1, 2, 3) one realises that

d(e−Aui) ∧ uj = 0 , i 
= j, (3.31)

which implies that d(e−Aui) has no leg in ui , it is then not hard to see that since (3.28b) has no 
εijkuj ∧ uk term it is in fact zero. So we can conclude without loss of generality that

d(e−Aui) = d(e2A+C− 1
2 �) − νe2A− 1

2 �v2 = 0 , (3.32)

which imply (3.28b)–(3.28c) without further constants. We can then solve these conditions by 
using them to define the vielbeine in terms of local coordinates as

v1 = eAdx1 , w1 = eAdx2 , w2 = eAdx3 , v2 = νe−2A+ 1
2 �dρ , ρ = e2A+C− 1

2 � .

(3.33)

We can now solve (3.28a), which in fact just tells us that

e� = e2A, (3.34)

up to rescaling gs and that e2A is a function of ρ only, making ∂xi
all isometry directions param-

eterising either R3 or T 3 locally.
The only non-trivial flux is the RR 3-form

F3 = −νρ3∂ρ(e−4A)Vol(S3) (3.35)

and its Bianchi identity, dF3 = 0, imposes that
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e−4A = c1 + c2

ρ2 , dci = 0 . (3.36)

This is the warp factor of a D5-brane or O5-hole, depending on the sign of c2 (see for example 
[41]). Indeed the metric locally takes the form

ds2 = e2Ads2(R1,5) + e−2A

(
dρ2 + ρ2ds2(S3)

)
(3.37)

As we will see, this is a subcase of the solution in the next section.

3.1.3. Subcase: generic β
For generic 0 < β < π

2 we are free to divide by the trigonometric functions in (3.17). Using 
sinβ 
= 0 it is possible to show that supersymmetry requires

d(e2A−� sinβ) = d(e−� cosβ) = deA ∧ v2 = 0, (3.38a)

d(e−Av1) = d(e2A+C− �
2
√

sinβ) − νe2A− �
2
√

sinβv2 = d(e−Aw cscβ) = 0 , (3.38b)

H3 + 2dβ ∧ w1 ∧ w2 = dβ ∧ v2 ∧ w1 ∧ w2 = 0 , (3.38c)

e3A �4 λ(G+) = d(e3A−� cosβv1) + d(e3A−� sinβv1 ∧ w1 ∧ w2) − e3A−� cosβH3 ∧ v1,

e3A+3C �4 λ(G−) = d(e3A+3C−� cosβv1 ∧ v2), (3.38d)

λ(G−) ∧ v2 ∧ (sinα + cosαw1 ∧ w2) − λ(G+) ∧ (sinα + cosαw1 ∧ w2) = 0 , (3.38e)

by following the same line of reasoning as in the previous subsection. First we solve (3.38b) by 
using it to define the vielbeine on M4 locally

v1 = eAdx1, w = eA sinβ(dx2 + idx3), v2 = νe−Adρ, ρ = eA+C , (3.39)

where we have used the first of (3.38a) to simplify these somewhat. Next (3.38a) is solved when

e� = e2A sinβ, cotβ = ce2A, dc = 0 , (3.40)

with A = A(ρ), β = β(ρ). As a result, ∂xi
are isometries. We then use (3.39) to take the Hodge 

dual of (3.38d), (3.38e) arriving at the fluxes

F3 = −νρ3∂ρ(e−4A)Vol(S3), H = 2e2A∂ρβ sin2 βdρ ∧ dx2 ∧ dx3, (3.41)

F5 = Vol3 ∧ dx1 ∧ d(e2A cotβ) + νe−2Aρ3 (
sin(2β)∂ρA − ∂ρβ

)
dx2 ∧ dx3 ∧ Vol(S3),

which solve (3.38e) without restriction. The Bianchi identities impose that

e−4A = c1 + c2

ρ2 , dci = 0 , (3.42)

which is again the warp factor of a D5-brane or O5-hole. However, in this case the metric takes 
the local form

ds2 = e2Ads2(R1,3) + e2A sinβ2ds2(T 2) + e−2A

(
dρ2 + ρ2ds2(S3)

)
(3.43)

where T 2 is spanned by (x2, x3). This generalises the solution in the previous section by in-
troducing an additional warping factor for a T 2 submanifold, thus breaking SO(1, 5) Lorentz 
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symmetry and leading to more general fluxes. In fact, this solution can be generated from the 
D5-brane solution of the previous section via “G-structure rotation” [42] which is formally a 
U-duality [43].

3.2. Branch II: α non-zero solutions

For the second branch with 0 < α < π , we begin by studying the lower form conditions that 
follow from (3.1). Here we find it useful to rotate the canonical frame of (B.3) as

v → − sinw1 + cosφ(cos θv1 − sin θw2) + iv2, (3.44)

w → cosφw1 + sinφ(cos θv1 − sin θw2) + i(cos θw2 + sin θv1). (3.45)

We then find the following necessary, but not sufficient, conditions for supersymmetry

cosβ sin δH0 = 0 , (3.46a)

eC cosα sinβdθ − 2ν(cosβ cos δv1 + sinβ sinαw1) = 0 , (3.46b)

eC cosα sinβ sin θdφ − 2ν(cosβ cos δw1 − sinα sinβv1) = 0 , (3.46c)

d(e2A+2C−� cosα sinβ) − 2νe2A+C−�(cosβ cos δw2 − sinβv2), (3.46d)

d(e2A+3C−�(sinα sinβw2 + sin(α − δ) cosβv2)) + e2A+3C−�H0 sinβ cosαv1 ∧ w1 = 0,

(3.46e)

d(e3A+2C−� (sinβ sinαv2 − cosβ sin(α − δ)w2))

+ 2νe3A+C−� cosβ(sin δw2 ∧ v2 + cos(α − δ)v1 ∧ w1)

− e3A+2C−�
(
dθ ∧ (cosβ sin(α − δ)v1 + sinβw1)

+ sin θdφ ∧ (cosβ sin(α − δ)w1 − sinβv1)
) = 0 . (3.46f)

First we note that if either θ or φ become constant or if cosα = 0 then (3.46b), (3.46c) require 
that sinβ = cos δ = 0 which makes (θ, φ) drop out of (3.11) entirely and the final line of (3.46f)
vanishes (setting sin θ = 0 leads to the same conclusion). In this case we can conclude that we 
can set

H0 = θ = φ = (δ − π

2
) = 0 (3.47)

without loss of generality, which we study in section 3.2.1.
If we assume sin θ and cosα don’t vanish, then (θ, φ) are local coordinates on a 2-sphere and 

we can take ρ = e2A+2C−� cosα sinβ as a local coordinate. We can then use (3.46b)–(3.46d) to 
rewrite (3.46f) as

d(e3A+2C−�(sinβ sinαv2 − cosβ sin(α − δ)w2))

+ 2νe3A+C−� cosβ(sin δw2 ∧ v2 − cos(α − δ)v1 ∧ w1) = 0, (3.48)

which we can then use to fix some of the free functions. First we note that if we solve (3.46a) with 
sin δ = 0, then (3.48) fixes cosβ = 0 – this is because sinβ sinαv2 − cosβ sinαw2 is parallel to 
dρ in this limit and so cannot generate the Vol(S2) factor that comes from v1 ∧w1. Next, for H0 =
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0 and for generic values of (α, β, δ) we can use (3.46b)–(3.46e) to locally define the vielbein on 
M4 by introducing another local coordinate such that dx = e2A+3C−�(sinα sinβw2 + sinα −
δ cosβv2), but then we must once more set the v1 ∧ w1 term in (3.48) to zero which fixes either 
cosβ = 0 or cos(α − δ) = 0. Thus, for H0 = 0 and a priori generic (θ, φ, α, β, δ), we end up with 
just two cases. Firstly cosβ = 0, which solves (3.46a) and makes the δ dependence of (3.11) drop 
out such that we can set without loss of generality

δ = 0 , β = π

2
. (3.49)

We shall examine this case in detail in section 3.2.2 where we find that it contains no solution. 
Secondly cos(α − δ) = 0, such that we can set without loss of generality

δ = α + π

2
, (3.50)

which we shall study in section 3.2.3, finding a new class of solution.
There is one final option one can consider for H0 = 0, by taking both cosα and sin θ non-

vanishing – one can tune the values of (α, δ, β) such that (sinα sinβw2 + sin(α − δ) cosβv2)

becomes parallel to dρ and so can no longer be used to introduce a local coordinate. This re-
quires fixing

tanβ =
√

cos δ sin(δ − α)

sinα
. (3.51)

It will then be (3.48) that will be used to define the final vielbein direction, which will necessarily 
be fibred over S2. We shall examine this possibility in section 3.2.4.

3.2.1. Subcase β = 0
For β = 0 the supersymmetry conditions reduce to

d(e2A−�) = d(e2A+3C−� cosαv2) = H3 = H0 = 0 , (3.52a)

d(e3A+2C−� cosαui) + 2νe3A+C−�(ui ∧ v2 + 1

2
sinαεijkuj ∧ uk) = 0 , (3.52b)

d(e2A+2C−�(sinαui ∧ v2 + 1

2
εijkuj ∧ uk)) − νe2A+C−� cosαεijkuj ∧ uk ∧ v2 = 0 ,

(3.52c)

e3A �4 λ(G+) = d(e3A−� cosαv1 ∧ w1 ∧ w2), e3A+3C �4 λ(G−) = −d(e3A+3C−� sinα),

(3.52d)

(cosαv2 ∧ λ(G−) + sinαv1 ∧ v2 ∧ w1 ∧ w2λ(G+))
∣∣
4 = 0, (3.52e)

where as usual u = (v1, w1, w2). Note that this system reduces to that of section 3.1.2 when 
sinα = 0, and that (3.52b) imposes that cosα 
= 0, so we can take 0 < 2α < π . By adding linear 
combinations of wedge products of (3.52a), (3.52b) and the vielbein to (3.52b), it is then possible 
to derive enough independent 2-form conditions to establish that

d(eA−C sinα)∧v2 = dα∧v2 = d(eA+C cosα)−νeAv2 = d(e−A secαui)∧uj = 0, i 
= j.

(3.53)

This is sufficient to establish that e2A, e2C and α are functions of a single local coordinate ρ, 
which v2 is parallel to – specifically
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ρ = eA+C cosα , v2 = νe−Adρ . (3.54)

The final condition in (3.53) implies that d(e−A secαu1) ∝ u2 ∧ u3 and cyclic permutations, 
however plugging this into (3.52b) and (3.52b) we realise we can without loss of generality take

ui = c1

2
eA cosαK̃i , K̃i + ν

2
εijkK̃

j ∧ K̃k , c1 = e−A+C

sinα
, dc1 = 0 , (3.55)

where K̃i are necessarily SU(2) invariant forms which furnish a frame for a round S3. We have 
now without loss of generality determined the vielbein on M4, which is a foliation of S3 over an 
interval, and (3.52a)–(3.52c) are solved when

e−2A = c1 sinα cosα

ρ
, e2C = e2Ac2

1 sin2 α , e2A−� = c2 , dci = 0 . (3.56)

The only non-trivial 10d flux can be extracted from (3.52d) and is given by

F3 = 2c2
1c2ν

(
sin2 α −ρ tanα∂ρα

)
Vol(S3)+2c2

1c2ν
(

cos2 α +ρ cotα∂ρα
)
Vol(S̃3) . (3.57)

The pairing equation (3.52e) is equivalent to the Bianchi identity at this point; either one implies

dα = 0 . (3.58)

The metric is of the form

ds2 = e2Ads2(R1,2) + e−2A

[
dρ2 + ρ2

cos2 α
ds2(S3) + ρ2

sin2 α
ds2(S3)

]
(3.59)

This solution has both an SO(4) R-symmetry and SO(4) flavour symmetry, and is S-dual to the 
one that we find in section 6, as will be explained in that section.

3.2.2. Subcase β = π
2

Here one can show that supersymmetry implies

d(e2A+2C−� cosα) − 2νe2A+C−�v2 = d(eC cotαw2) = 0 , (3.60a)

eCdθ − 2ν tanαw1 = eC sin θdφ + 2ν tanαv1 = 0 , (3.60b)

d(e−A−C sinα) = d(e� sinα tanα) ∧ v2 = d(e−A−C+� tanα) ∧ w2 ∧ v2 = 0 , (3.60c)

d(eA+C− �
2 tanα

√
cosα) ∧ w2 + 1

2

√
cosαeA+C− �

2 H0v1 ∧ w1 = 0 , (3.60d)

d(e2A+2C−� cosα cot2 α) ∧ Vol(S2) = 0 , (3.60e)

H3 + ν

2
eC cotαw2 ∧ Vol(S2) = d(e−2C tanα) ∧ v2 ∧ Vol(S2) = 0 , (3.60f)

e3A �4 λ(G+) − d(e3A−�w2) + d(e3A−� sinαv1 ∧ v2 ∧ w1) = 0 , (3.60g)

e3A+3C �4 λ(G−) + e3A+3C−�H0w2 + d(e3A+3C−� cosαv2 ∧ w2) = 0 , (3.60h)(
(sinαw2 − v1 ∧ v2 ∧ w1) ∧ λ(G−) − cosαv1 ∧ v2 ∧ λ(G+)

)∣∣∣∣
4
= 0 . (3.60i)
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There is no solution to this set of constraints, as we will now show. First, we note that H0 = 0 is 
imposed by (3.60d). Let ρ = e2A+2C−� cosα. Due to (3.60a), we have w2 ∼ dx, v2 ∼ dρ. It is 
then possible to rewrite (3.60d), (3.60e) as

d
(√

ρ tanα
) ∧ dx = 0 , d

(
ρ cot2 α

)
∧ dθ ∧ dφ = 0 . (3.61)

The first equation implies tanα = ρ−1/2f (x), which is incompatible with the second equation – 
thus this putative class contains no solutions.

3.2.3. Subcase δ = α + π
2 , H0 = 0

As explained below (3.46f), here we necessarily have β > 0 and 0 < α < π
2 – for this reason it 

will turn out the case contains no solutions. As the proof is similar to that of the previous section 
we shall be brief, this time only quoting sufficient supersymmetry conditions to prove this. In 
addition to the rotation of (B.3) we find it useful to send v1 + iw1 → e−iβ(v1 + iw1), then a set 
necessary (but insufficient) conditions for supersymmetry are

d(e2A−� cosα cosβ) = 0, (3.62a)

d(eC cotαw2) = 0, (3.62b)

(v1 + iw1) tanα + eC sinβ

2ν
(dθ + i sin θdφ), d(e2A+3C−�(sinα sinβw2 − cosβv2)) = 0,

(3.62c)

d(e2A+2C−� cosα sinβ) − 2νe2A+C−�(cosβ sinαw2 + sinβv2) = 0, (3.62d)

e2A−� cosα cosβH3 + d(e2A−� cosα sinβv1 ∧ w1) = 0, (3.62e)

e2A+3C−�(sinα sinβw2 − cosβv2) ∧ H3

+ d(e2A+3C−�v1 ∧ w1 ∧ (sinβv2 − cosβ sinαw2)) = 0. (3.62f)

As elsewhere we can take (3.62c)–(3.62d) as a local definition of the vielbein without loss of 
generality – v1, w1 are clearly the local vielbeine of a round S2 in terms of the local coordinates 
(θ, φ). For v2, w2 we introduce local coordinates x and ρ = eA+C− 1

2 �
√

cosα sinβ such that

e2A+3C−�(sinα sinβw2 − cosβv2) = dx. (3.63)

We can then use (3.62e) to define H3 without loss of generality, which leaves (3.62a), (3.62b)
and (3.62f) to solve – this turns out to be impossible. To see this, one needs to consider the 
combination 4(3.62f) + (

f1(3.62a) ∧ dρ + f2(3.62a)
) ∧ Vol(S2). When one tunes

f1 = e−A+5C+ �
2 ν

cos
3
2 α sin

5
2 β

sin2 α cosβ
, f2 = e2A+4C−� cosα sinβ tanβ, (3.64)

this leads to

cotα cscα sinβ tanβdx ∧ dρ ∧ Vol(S2) = 0 (3.65)

which cannot be solved without violating the initial assumptions that lead to this case. We con-
clude that there exist no solutions.
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3.2.4. Subcase: special value of β , H0 = 0
The final case in IIB requires us to tune tanβ to a specific value. After redefining δ → δ + α, 

this value is

tanβ =
√

cos(α + δ) sin δ

sinα
. (3.66)

In addition, we rotate the vielbein (with respect to (3.44)) as

v1 + iw1 → −i
cosβ cos(α + δ) + i sinα sinβ√
cos2 β cos2(α + δ) + sin2 α sin2 β

(v1 + iw1),

v2 + iw2 → −i
sinα sinβ + i cosβ sin δ√
sin2 α sin2 β + cos2 β sin2 δ

(v2 + iw2) (3.67)

In what follows we assume that the undefined functions of the spinor ansatz are bounded 
as 0 < 2α < π and 0 < δ + α < π

2 , as the upper and lower limits have been dealt with in the 
proceeding sections. It is then possible to show that the necessary and sufficient conditions for 
supersymmetry for this case are

d(eA−C sinα) = d

(
e2A−�

√
sinα sin(α + δ)

cos δ

)
= d

(
e−�

√
sin 2(α + δ)

sin 2δ

)
= 0, (3.68a)

2νe−C
√

tanα cot δ(w1 − iv1) − (dθ + i sin θdφ) = 0, (3.68b)

2νd

(
e−C tanα

√
cosα sin(α + δ)

sin δ
w2

)
− Vol(S2) = d

(
eA+C

√
cosα sin δ

sin(α + δ)

)
− νeAv2 = 0,

(3.68c)

H3 + 1

4
d

(
e2C cos2 α sin δ

sin2 α sin(α + δ) cos δ

√
cos(α + δ) sinα sin δ

)
∧ Vol(S2) = dα ∧ v2 = 0

(3.68d)

e3A �4 λ(G+) − dH3

(
e3A−�

√
cosα cos(α + δ)

cos δ

)

− d

(
e3A−�

√
sinα cosα sin δ

cos δ
v1 ∧ w1 ∧ w2

)
= 0, (3.68e)

e3A+3C �4 λ(G−) + dH3

(
e3A+3C−�

√
cos δ sinα

sin(α + δ)

)

− d

(
e3A+3C−� cosα

√
sin δ cos(α + δ)

cos δ sin(α + δ)
v2 ∧ w2

)
= 0,

((√ sinα cosα sin δ

cos δ
v2 −

√
cosα cos(α + δ)

cos δ
v1 ∧ w1 ∧ v2

) ∧ λ(G−) (3.68f)
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− (√ sinα sin(α + δ)

cos δ
− cosα

√
sin δ cos(α + δ)

cos δ sin(α + δ)
v1 ∧ w1

−
√

sinα cos δ

sin(α + δ)
v1 ∧ v2 ∧ w1 ∧ w2

) ∧ λ(G+)

)∣∣∣∣
4
= 0,

where Vol(S2) is the volume form on the S2 spanned by (θ, φ). We solve these conditions by 
first using (3.68b)–(3.68c) to define the vielbein locally without loss of generality as

w1 = ν

2
eC

√
cosα sin δ

sinα cos δ
dθ , v1 = −ν

2
eC

√
cosα sin δ

sinα cos δ
sin θdφ , (3.69)

w2 = −ν

2
eC cotα

√
sin δ

sin(α + δ) cosα
(dψ + cos θdφ) , v2 = νe−Adρ , (3.70)

where we have taken θ, φ as local coordinates and introduced the additional coordinates ψ and

ρ = eA+C

√
cosα sin δ

sin(α + δ)
. (3.71)

We can invert this conditions then use (3.68a) to define A, C, �, δ in terms of α, ρ and some 
integration constants ci as

e−4A = c2
1 cos2 α sin2 α

ρ2 − c3 sin2 α

c2
2

, e2C = c2
1 sin2 αe2A,

e−2� = e−4A

(
c2

2 + c3ρ
2

c2
1 sinα2

)
, cot(α + δ) = c3ρ

2

c2
1c

2
2 sinα cosα

. (3.72)

The second equality in (3.68d) implies that α is itself a function of ρ only, so we realise that ∂ψ

is an isometry of the solution and that M4 is foliation of a (SU(2) × U(1) preserving) squashed 
3-sphere over an interval.

We now turn our attention to the fluxes. We have that (3.68d) simply defines the NSNS flux in 
such a way that it is automatically closed, while the RR fluxes are defined through the 4d fluxes 
that follow from (3.68e). We could use the definitions of the functions in (3.72) and vielbein in 
(3.69) to calculate the 10d fluxes immediately, however we already have enough information to 
first fix α. The 3-form component of �4λ(G−) is necessarily parallel to v1 ∧w1 ∧ v2 from which 
it follows that the 10d flux F1 is parallel to w2. As this vielbein is fibred over the S2 we have that 
dF1 = 0 iff (�4λ(G−))3 = 0. For cos(α + δ) 
= 0 this imposes d(c2

1c
2
2 sin2 α + c3ρ

2) = 0, which 
implies that

sin2 α = c4 − c3ρ
2

c2
1c

2
2

, dci = 0, (3.73)

and as a result, every function has been solved in terms of ρ and the four integration constants 
ci . We are now ready to calculate the fluxes. The non-trivial ones take the form

B = √
c3

1 − c4

4c4c2
ρ2Vol(S2) , F3 = 1

4
νc2

1c2(1 − c4)dψ ∧ Vol(S2) + 2νc2
1c2c4Vol(S3) ,

(3.74)
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F5 = B ∧ F3 + c1c
2
2ν

√
c3d

(
ρ2

2(c3ρ2 − c2
1c

2
2c4)

(dψ + cos θdφ)

)

+ νc2
1
√

c3c4

2
d
(
ρ2(dψ + cos θdφ)

) ∧ Vol(S3) ,

where dB = H . Clearly the Bianchi identities of the fluxes are implied automatically and one 
can show that this is true of (3.68f) also. So this case contains a single example, expressed in 
terms of 4 integration constants. The 10d metric, warp factor and dilation then take the form

ds2 = e2Ads2(R1,2) + e−2A

[
dρ2 + 1

1 − c4
ρ2ds2(S3) + ρ2

4(c4 − c3
c2

1c2
2
ρ2)

(dψ + cos θdφ)2

+ ρ2

4c4
ds2(S2)

]
, e−4A = (1 − c4)

(
c1c4

ρ2 − c3

c2
2

)
, e−4A+2� = 1

c2
2

− c3

c2
1c

4
2c4

ρ2 .

(3.75)

This solution preserves an SO(4) R-symmetry realised by one SU(2) factor of the round S3

and the SU(2) of the squashed sphere – the residual symmetries of the spheres make up an 
SU(2) × U(1) flavour symmetry. Despite our assumption that α + δ 
= π

2 (which is when c3 =
0) when deriving (3.68a)–(3.68f) there is in fact no issue with taking this limit, which merely 
collapses this solution to that of section 3.2.1. There is good reason for this, as one can actually 
generate this solution from section 3.2.1 by first T-dualising on ∂ψ then performing a formal 
U-duality6 on the Mink3 followed by another T-duality on ∂ψ . Additionally, this solution is also 
contained in section 4.2.2: it can be obtained by imposing that the coordinate x there (which 
should be identified with ψ in this section) is an isometry and then T-dualising it.

This concludes our IIB classification, we shall now turn our attention towards IIA.

4. Mink3 with an S3 factor in IIA

The type IIA supersymmetry conditions obtained from plugging (2.14) into the seven-
dimensional supersymmetry constraints (2.4) lead to the following constraints on the four-
dimensional bispinors

dH3(e
2A−�Imψ1−) = 0 , (4.1a)

dH3(e
2A+2C−�ψ2−) + 2iνe2A+C−�ψ2

γ̂+ = 0 , (4.1b)

dH3(e
3A+2C−�ψ2+) + 2iνe3A+C−�ψ2

γ̂− = 0 , (4.1c)

dH3(e
2A+2C−�Reψ1−) − 2νe2A+C−�Imψ1

γ̂+ = 0 , (4.1d)

dH3(e
2A+3C−�Reψ1

γ̂+) − e2A+3C−�H0Imψ1− = 0 , (4.1e)

6 T-dualities along the spatial components of Mink3, then a lift to M-theory followed by a boost along the M-theory 
U(1) before reducing to IIA, and finally undoing the spatial T-dualities. This process needs to be supplemented by 
rescaling the coordinates along the way, which is why we refer to this as a formal U-duality.
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dH3(e
3A+2C−�Imψ1+) + 2νe3A+C−�Reψ1

γ̂− = 0 , (4.1f)

while the fluxes are defined through

dH3(e
3A−�Reψ1+) + e3A �4 λ(G−) = 0 , (4.2a)

dH3(e
3A+3C−�Imψ1

γ̂−) + e3A+3C−�H0Reψ1+ + νe3A+3C �4 λ(G+) = 0 , (4.2b)

and must additionally satisfy(
Reψ1

γ̂+ ∧ λ(G+) + Imψ1− ∧ λ(G−)

)∣∣∣∣
4
= 0 (4.3)

As before, we will first examine the 0-form constraints. These are given by two of the three 
constraints that were found for type IIB:

(ψ2
γ̂
)0 = (Imψ1

γ̂
)0 = 0 . (4.4)

Again, the solutions branch off similar to type IIB, with an α = 0 and an α 
= 0 branch. We 
parameterise Branch I as in (3.9) and Branch II as in (3.11).

4.1. Branch I: solutions with α = 0

As was the case in IIB we first study the lower form conditions that follow from (3.1). After 
once more rotating the canonical frame of (B.3) by (3.13) we extract the necessary, but not 
sufficient, supersymmetry conditions

d(e2A+3C−� cosβ sin δ) + e2A+3C−�H0 cosβw1 = 0 , (4.5a)

e2A+3C−�H0 sinβ(cos δw1 − sin δv2) ∧ v1 ∧ w2 + cosβ(...) = 0 , (4.5b)

d(e2A−� cosβw1) = d(e3A+2C−� cosβ cos δ) − 2νe3A+C−� cosβv2 = 0 , (4.5c)

cosβ(sin δv1 + ν

2
eC cos δdθ) = cosβ(sin δw2 − ν

2
eC cos δ sin θdφ) = 0 , (4.5d)

d(e2A+2C−� sinβ(cos δw1 − sin δv2)) + 2νe2A+C−�(sinβw1 ∧ v2 − cosβ sin δv1 ∧ w2)

− cosβ cos δe2A+2C−�(dθ ∧ w2 + sin θdφ ∧ v1) = 0, (4.5e)

where cosβ(...) represents further terms which vanish when cosβ = 0. These are sufficient to 
truncate the ansatz considerably. We note from (4.5a) that if sin δ = 0 then either H0 = 0 or 
cosβ = 0, however the latter also leads to H0 = 0 because of (4.5b) – so sin δ = 0 implies 
H0 = 0. We also observe that if sin δ = 0 then (4.5c) requires dθ = dφ = 0, or naively cos θ = 0
but this is a subcase of the former (see (3.9)), so sin δ = 0 also implies dθ = dφ = 0. Our task 
now is to show that, as in IIB, sin δ = 0 is a necessary condition: first we note that if we set 
cos δ = 0 then there is no solution as (4.5c) sets the vielbein to zero, thus we can restrict our 
considerations to 0 < sin δ < π

2 where (w1, v2) must span an S2. However, as was the case in 
IIB, (4.5e) can be rewritten as

d(e2A+2C−� sinβ(cos δw1 −sin δv2))+2νe2A+C−�(sinβw1 ∧v2 +cosβ sin δv1 ∧w2)=0,

(4.6)
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using (4.5d) which excludes this because w1 ∧ v2 gives rise to a Vol(S2) term that can not be 
cancelled by the parts involving (v1, w2). Thus we can once more conclude that

H0 = δ = θ = φ = 0 . (4.7)

Given this, we can write the necessary and sufficient solutions for supersymmetry in the α = 0
limit in a relatively simple way. After rotating the canonical frame, this time as in (3.16), we find

H0 = d(e2A−� cosβv1) = d(e
3
2 A+C− �

2
√

cosβ) − νe
3
2 A− �

2
√

cosβv2 = 0 ,

d(e2A+2C−�w) + 2νe2A+C−�w ∧ v2

= d(e2A+2C−� sinβv1) + 2νe2A+C−� sinβv1 ∧ v2 = 0 ,

d(e3A+2C−�v1 ∧ w) − 2νe3A+2C−�v1 ∧ w ∧ v2 = d(e3A−� cosβ) ∧ v1 ∧ v2 = 0 ,

d(e3A+2C−� sinβw1 ∧ w2) − 2νe3A+2C−� sinβw1 ∧ w2 ∧ v2 + e3A+2C−� cosβH3 = 0 ,

e2AH3 ∧ v1 + cos2 βd(e2A tanβ) ∧ v1 ∧ w1 ∧ w2 = d(e−A+� sinβ) ∧ v1 ∧ w1 ∧ w2

= w ∧ H3 = 0 ,

d(e3A−� sinβ) + d(e3A−� cosβw1 ∧ w2) − e3A−� sinβH3 − e3A �4 λ(G−) = 0 ,

d(e3A+3C−� sinβv2) + d(e3A+3C−� cosβw1 ∧ w2 ∧ v2)

− e3A+3C−� sinβH3 ∧ v2 − e3A+3C �4 λ(G+) = 0 ,(
cosβv1 ∧ v2 ∧ λ(G+) + (cosβ − sinβw1 ∧ w2) ∧ v1 ∧ λ(G−)

)∣∣∣∣
4
= 0 . (4.8)

This is as far as we can go without making assumptions about β , which we now proceed to do.

4.1.1. Subcase: β = 0
Setting β = 0 in (4.8) immediately leads to H3 = 0, the rest of the conditions are implied by

d(e
3
2 A+C− �

2 ) − νe
3
2 A− �

2 v2 = d(e2A−�v1) = d(e−Aw) = 0 , (4.9a)

d(e2A) ∧ v1 ∧ v2 = d(e−A+�) ∧ w ∧ v1 = 0 , (4.9b)

e3A �4 λ(G−) − d(e3A−�w1 ∧ w2) = 0 , (4.9c)

e3A+3C �4 λ(G+) − d(e3A+3C−�w1 ∧ w2 ∧ v2) = 0 , (4.9d)(
v1 ∧ v2 ∧ λ(G+) + v1 ∧ λ(G−)

)∣∣∣∣
4
= 0 . (4.9e)

The first thing we note is that given (4.9c)–(4.9d), G+ must be a 0-form and G− a 1-form which 
means (4.9e) is solved automatically. Next, we solve (4.9a) by using it to define the vielbein

v1 = e−2A+�g(x)dx, w = eA(dψ1 + idψ2) , v2 = ν e−3A/2+�/2dρ, ρ = e
3
2 A+C− �

2 ,

(4.10)
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where g is a function parametrising a potential coordinate transformation in x. From eq. (4.9c), 
we see that the combination eA−� only depends on x and that eA, e� and eC are functions of 
x, ρ only, so that ∂ψ1 and ∂ψ2 are isometries. We thus choose to parametrise

eA−� = f (x) , g = −f , (4.11)

the latter of which is a convenient choice we make without loss of generality. For the fluxes, we 
use the v1, v2, w1, w2 vielbein on M4 to compute the Hodge duals from eq. (4.9c) and (4.9d), 
arriving at the ten-dimensional fluxes

F0 = ∂xf , F4 = νρ3
(

f ∂ρ(f −1e−4A)dx − ∂x(f
−1e−4A)dρ

)
∧ Vol(S3) . (4.12)

The Bianchi identities reduce to dF0 = dF4 = 0 which leads to

∂2
xf = 0 , ∂2

x (f −1e−4A) + f
1

ρ3 ∂ρ(ρ3∂ρ(f −1e−4A)) = 0 , (4.13)

the former of which can be immediately integrated as f = (c + F0x), dc = 0. The metric takes 
the form

ds2 = 1√
f H

ds2(R1,4)+
√

H

f

(
dρ2 +ρ2ds2(S3)

)
+√

f Hdx2, H = f −1e−4A. (4.14)

This solution corresponds to an intersecting D4–D8 brane system, where the localised D4-branes 
are embedded in the D8-branes [40].

4.1.2. Subcase: β = π
2

The β = π
2 limit of (4.8) leads to H3 ∝ v1 ∧ w1 ∧ w2 with the remaining conditions implied 

by

d(e2A+2C−�ui) + 2νe2A+C−�ui ∧ v2 = 0 , (4.15a)

d(e3A+2C−�εijkuj ∧ uk) − 2νe3A+C−�εijkuj ∧ uk ∧ v2 = 0 , (4.15b)

d(e3A−�) − e3A−�H3 + e3A �4 λ(G−) = 0 , (4.15c)

d(e3A+3C−�v2) − e3A+3C−�H3 ∧ v2 + e3A+3C �4 λ(G+) = 0 , (4.15d)

d(e−A−�) ∧ v1 ∧ w1 ∧ w2 = v1 ∧ w1 ∧ w2 ∧ λ(G−)

∣∣∣∣
4
= 0 , (4.15e)

where we introduce

u = (v1,w1,w2), (4.16)

to ease notation, and to make clear the cyclic property of these vielbein. The first thing we 
note is that, given (4.15c), the second of (4.15e) reads �4H3 ∧ v1 ∧ w1 ∧ w2 = 0, but since 
H3 ∝ v1 ∧ w1 ∧ w2 we must set

H3 = 0 . (4.17)

Next one can show that both (4.15a) and (4.15b) together imply the useful identities

d(eAui) ∧ uj = [
d(eA/2+C−�/2) − νeA/2−�/2v2

] ∧ ui ∧ uj = 0 , i 
= j, (4.18)
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so we must have

d(eAui) + ci

2
εijkuj ∧ uk = d(eA/2+C−�/2) − νeA/2−�/2v2 = dci = 0 . (4.19)

Consistency of the first of these with (4.15a) implies that ci = 0, and with this fixed (4.15b) is 
also followed from (4.19). We can use the standard trick of taking (4.19) to define a vielbein in 
terms of local coordinates, namely

ui = e−Adxi, v2 = νe−A/2+�/2dρ, ρ = eA/2+C−�/2. (4.20)

Having defined the vielbein, it is then a simple matter to solve the first of (4.15e) by introducing 
a free function

e−A−� = f (x1, x2, x3). (4.21)

All that remains is to calculate the fluxes, and impose their Bianchi identities. Using (4.20) to 
take the Hodge duals of 4.15c and 4.15d we find the 10d fluxes

F2 = 1

2
εijk∂xi

f dxj ∧ dxk, (4.22)

F6 = −νρ3
(

1

2
εijk∂xi

(f −1e−4A)dxj ∧ dxk ∧ dρ − f ∂ρ(f −1e−4A)dx1 ∧ dx2 ∧ dx3

)

∧ Vol(S3),

which clearly means the Bianchi identities, away from localised sources, follow from

∂2
xi

f = 0 , ∂2
xi

(f −1e−4A) + f
1

ρ3 ∂ρ(ρ3∂ρ(f −1e−4A)) = 0 . (4.23)

The metric takes the form

ds2 = 1√
f H

ds2(R1,2) +
√

H

f

(
dρ2 + ρ2ds2(S3)

)
+ √

f H(dx2
1 + dx2

2 + dx3
3) ,

H = f −1e−4A .

(4.24)

The solution corresponds to an intersecting D2–D6 brane system [44].

4.1.3. Subcase: generic β
For 0 < β < π

2 one is able to divide by sinβ, cosβ freely when simplifying (4.8). Assuming 
that cosβ 
= 0 the result is

d(e2A−� cosβv1) = d(e−A secβw) = 0 , (4.25a)

d(e
3
2 A+C− 1

2 �
√

cosβ) − νe
3
2 A− 1

2 �
√

cosβv2 = 0 , (4.25b)

d(e−A+� secβ) ∧ v1 ∧ w = d(e2A) ∧ v1 ∧ v2 = d(e−2A tanβ) ∧ v1 = 0 , (4.25c)

e2A cos2 βH3 + d(e2A sinβ cosβ) ∧ w1 ∧ w2 = 0 , (4.25d)

d(e3A+3C−� sinβv2) + d(e3A+3C−� cosβw1 ∧ w2 ∧ v2)

− e3A+3C−� sinβH3 ∧ v2 − e3A+3C �4 λ(G+) = 0,
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d(e3A−� sinβ) + d(e3A−� cosβw1 ∧ w2) − e3A−� sinβH3 − e3A �4 λ(G−) = 0 ,

(4.25e)(
cosβv1 ∧ v2 ∧ λ(G+) + (cosβ − sinβw1 ∧ w2) ∧ v1 ∧ λ(G−)

)∣∣∣∣
4
= 0 , (4.25f)

where H3 is closed given (4.25a) and (4.25c). As usual we solve (4.25a) and (4.25b) by using 
them to define a vielbein in terms of local coordinates

v1 = g(x)e−2A+� secβdx, w = eA cosβ(dψ1 + idψ2),

v2 = νe− 3
2 A+ 1

2 �
√

secβdρ, ρ = e
3
2 A+C− 1

2 �
√

cosβ, (4.26)

where g(x1) is a function parametrising a potential diffeomorphism in x1. With local coordinates 
introduced we can solve (4.25c) in terms of them as

eA−� cosβ = f (x) , A = A(ρ,x) , tanβ = c(x1)e
2A , g = −f , (4.27)

so that ∂ψi
are necessarily isometry directions. We can then calculate the ten-dimensional fluxes 

as before – first we note that

F0 = ∂xf + ∂xcf tan2 β

c
, (4.28)

should be constant. We shall restrict ourselves to the case ∂xc = 0. For generic β then the fluxes 
may be expressed as

F0 = ∂xf, F2 = F0B2, B2 = − sin2 β

c
dψ1 ∧ dψ2, dc = 0 (4.29)

F4 = B2 ∧ F2 + νρ3
(

f ∂ρ(f −1e−4A)dx − ∂x(f
−1e−4A)dρ

)
∧ Vol(S3).

We note that the Bianchi identities follow when anything not coupled to B2 is closed, and since 
these terms reproduce (4.12) the Bianchi identities imply the PDEs of (4.13) once more. This is 
because the class of solutions in this section can be generated via U-duality, from the intersecting 
D4–D8 system in section 4.1.1. For completeness the metric takes the form

ds2 = 1√
f H

ds2(R1,2) + cos2 β√
f H

ds2(T 2) +
√

H

f

(
dρ2 + ρ2ds2(S3)

)
+ √

f Hdx2,

(4.30)

H = f −1e−4A,

where T 2 is spanned by (ψ1, ψ2).

4.2. Branch II: α non-zero

For the second branch with 0 < α < π , we begin by studying the lower form conditions that 
follow from (4.1). As in IIB we find it useful to rotate the canonical frame of (B.3) as (3.44). 
Necessary but insufficient conditions for supersymmetry are

Articles 199



U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JID:NUPHB AID:14363 /FLA [m1+; v1.285; Prn:6/06/2018; 11:31] P.26 (1-49)

26 N.T. Macpherson et al. / Nuclear Physics B ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

d(e2A+3C−� cosβ cos(α − δ)) + e2A+3C−�H0(cosβ cos δv2 + sinβw2) = 0, (4.31a)

d(e2A−�(cosβ cos δv2 + sinβw2)) = 0, (4.31b)

d(e3A+2C−� cosα sinβ) + 2νe3A+C−�(cosβ cos δw2 − sinβv2) = 0, (4.31c)

eC cosα sinβ sin θdφ − 2ν(cosβ cos δw1 − sinα sinβv1) = 0, (4.31d)

eC cosα sinβdθ − 2ν(cosβ cos δv1 + sinα sinβw1) = 0, (4.31e)

d(e2A+2C−�(sinα sinβv2 − sin(α − δ) cosβw2))

+ 2e2A+C−�ν cosβ(sin δw2 ∧ v2 + cos(α − δ)v1 ∧ w1) = 0, (4.31f)

First from (4.31a) we observe that when cos(α − δ) = 0 (cosβ = 0 is a subcase of this) we 
necessary have H0 = 0. Next we observe that generically (4.31b)–(4.31e) can be used to locally 
define the vielbein on M4, the only exception is when sinβ = 0 (cosα = 0 is a subcase of this).

Setting sinβ = 0 means that in order to solve (4.31d)–(4.31e) we must take δ = π
2 , addition-

ally (θ, φ) drop out of the definition of the spinors so we can fix

β = θ = φ = (δ − π

2
) = 0 (4.32)

without loss of generality. Interestingly one doesn’t need to set H0 = 0, however as we shall see 
in section 4.2.1 this case actually contains no solutions.

If one assumes sinβ 
= 0 we see that v1, w1 must span S2 while v2, w2 can be expressed 
in terms of local coordinates in such a way that they have no legs in S2. This is a problem for 
(4.31f) which generically has an Vol(S2) factor, due to the v1 ∧ w1 term which sits orthogonal 
to everything else. Thus the only resolution is to fix cos(α − δ) = 0 which leads to H0 = 0 also. 
This actually leads to a novel class of solutions that we shall derive in section 4.2.2.

4.2.1. Subcase: β = 0
Upon setting β = 0 we are led to the following conditions for supersymmetry

d(e2A+3C−� sinα) = d(e−A−� cos4 α) ∧ v1 ∧ w1 ∧ w2 = 0 , (4.33a)

d(e2A+2C−� cosαui) + νe2A+C−�(sinαεijkuj ∧ uk + 2ui ∧ v2) = 0 , (4.33b)

d(e3A+2C−�(εijkuj ∧ uk + 2 sinαui ∧ v2)) − 2νe3A+C−� cosαεijkuj ∧ uk ∧ v2 = 0 ,

(4.33c)

sinαH3 − cosαH0v1 ∧ w1 ∧ w2 = 0 , (4.33d)

e3A �4 λ(G−) + d(e3A−�) − e3A−�H0 cotαv1 ∧ w1 ∧ w2 = 0 , (4.33e)
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e3A+3C �4 λ(G+) + e3A+3C−�H0 + d(e3A+3C−� cosαv2)

− e3A+3C−�H0 cscαv1 ∧ v2 ∧ w1 ∧ w2 = 0,(
cosαv1 ∧ w1 ∧ w2 ∧ λ(G−) − (sinα − v1 ∧ v2 ∧ w1 ∧ w2) ∧ λ(G+)

)∣∣∣∣
4
= 0 , (4.33f)

where here as elsewhere u = (v1, w1, w2). Using the same techniques as are spelled out in sec-
tion 3.1.2, it is possible to establish that

d(e
1
2 A+C− 1

2 �) − νe
1
2 A− 1

2 � cosαv2 = d(eAui) ∧ uj = 0, for i 
= j (4.34)

which we can use as in section 3.2.1 to define the vielbein in terms of the local coordinate 
ρ = e

1
2 A+C− 1

2 � and a set of left invariant 1-forms such that

v2 = νe− 1
2 A+ 1

2 �dρ, ui = e−A cosαciK̃i , dK̃i = 1

2
K̃j ∧ K̃k, (4.35)

under the assumption that α 
= 0. Plugging this back into (4.33b) fixes

e2A = c4e−2� sin4 α

ρ4 , sinα = c1

ρ
, ci = c (4.36)

however plugging this back into (4.33a) leads to

dρ ∧ K̃1 ∧ K̃2 ∧ K̃3 = 0 (4.37)

which cannot be solved.

4.2.2. Subcase: δ = α + π
2

The final case we consider is when δ = α + π
2 and contains β = π

2 as a subcase. In addition to 
the rotating the canonical frame (B.3) by (3.44) we find it useful to send v1 + iw1 → e−iβ(v1 +
iw1), then the necessary and sufficient conditions for supersymmetry are

d(eA−C sinα) = H0 = 0 , (4.38a)

d(e3A+2C−� cosα sinβ) − 2νe3A+C−�k1 = d(e2A−�k2) = 0 ., (4.38b)

eC cosα sinβdθ + 2ν sinαv1 = eC cosα sinβ sin θdφ + 2ν sinαw1 = 0 , (4.38c)

H3 = 1

4

(
d(e2C cot2 α cosβ sinβ) − 2eCν cosαw2

)
∧ Vol(S2), (4.38d)

d

(
e−A+C sinα

�

)
∧ k1 − e2A+C−� cosα sinβd

(
e−3A+� cosα cosβ

�

)
∧ k2 = 0 ,

(4.38e)

d

(
e− 3

2 A+C+ 1
2 � cos

3
2 α

√
sinβ cosβ

�

)
∧ k1

− e
1
2 A− 1

2 �
√

cosα sinβd

(
e−2A+C+� cotα sinβ

�

)
∧ k2 = 0 ,
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e3A �4 λ(G−) + d(e3A−� cosα cosβ) − d(e3A−� cosα sinβv1 ∧ w1)

− e3A−� cosα cosβH3 = 0 ,

e3A+3C �4 λ(G+) + d(e3A+3C−�k3) − d(e3A+3C−�v1 ∧ w1 ∧ k1) + e3A+3C−�k2 ∧ H3,

(4.38f)(
cosα sinβ(1+ cotβv1 ∧ w1) ∧ v2 ∧ w2 ∧ λ(G+) − (k2 − k4 ∧ v1 ∧ w1) ∧ λ(G−)

)∣∣∣
4
=0,

(4.38g)

where we introduce

k1 = (sinα cosβw2 + sinβv2), k2 = (sinα cosβv2 − sinβw2),

k3 = (cosαv2 − sinα sinβw2), k4 = (cosαw2 + sinα sinβw1),

� = sin2 β + cos2 β sin2 α, Vol(S2) = sin θdθ ∧ dφ, (4.39)

to ease presentation. We can use (4.38b)–(4.38d) to locally define the vielbein through

k1 = ν
√

cosα sinβe− 3
2 A+ 1

2 �dρ, k2 = e−2A+�dx, (4.40)

v1 = − 1

2 sinα
νe− 3

2 A+ 1
2 �ρ

√
cosα sinβdθ,

w1 = − 1

2 sinα
νe− 3

2 A+ 1
2 �ρ

√
cosα sinβ sin θdφ,

where (θ, φ, x) and

ρ = e
3
2 A+C− 1

2 �
√

cosα sinβ (4.41)

are local coordinates on M4. The ten-dimensional metric then takes the form

ds2 = (4.42)

e2Ads2(R1,2) + e−3A+�

cosα sinβ
ρ2ds2(S3) + e−4A+2�dx2

�

+ e−3A+� cosα sinβ

4 sin2 α

(
4 sin2 αdρ2

�
+ ρ2ds2(S2)

)
.

We can now turn our attention to (4.38a) and (4.38e) which lead to the PDEs

∂ρ(eA−C sinα) = ∂x(e
A−C sinα) = 0 , (4.43a)

νρ∂ρ

(
e−3A+� cosα cosβ

�

)
+ ∂x

(
e−A+C sinα

�

)
= 0 , (4.43b)

ν∂ρ

(
e−2A+C+� cotα sinβ

�

)
+ ∂x

(
e− 3

2 A+C+ 1
2 � cos

3
2 α

√
sinβ cosβ

�

)
= 0 , (4.43c)

and tell us that e2A, e2C, e�, α, β are functions of (ρ, x) only, which means these solutions 
support an additional SU(2) isometry due to round S2 spanned by (θ, φ). Actually this SU(2)
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is an additional part of an enhanced R-symmetry which together with the SU(2)R of S3 gives 
SO(4)R – there is also an SU(2) flavour symmetry. It is now a simple matter to calculate the 
Hodge dual of the fluxes from (4.38f) and then the fluxes themselves given (4.38d) and our local 
vielbein (4.40). At first G± take a complicated form that we will not quote here, however, we 
are yet to impose also (4.38g): doing so and making extensive use of (4.43a)–(4.43c) one can 
express the ten-dimensional fluxes as:

H = 1

4

(
d(e2C cot2 α cosβ sinβ)

− 2

�
(ρe−3A+� cosα cosβdρ − νe−2A+C+� cotα sinβdx)

)
∧ Vol(S2) ,

F0 = 2
�

sinα
e−2�∂x(e

2A sinα) ,

F2 = e−3A− 1
2 �ρ

√
cosα

4 sin2 α

(
F0e

3
2 �ρ

√
cosα cosβ − 2νe

3
2 A sinα

√
sinβ

)
Vol(S2) ,

F4 = −Vol3 ∧ d(e3A−� cosα sinβ) + e− 5
2 A+ 1

2 �ρ2

√
cosα sinβ sinα

(
d(e−2A cotβ)

− 2e− 5
2 A sinα

sinβ�

(
νe

1
2 �

√
sinβ

cosα
dρ − e

1
2 A sinα cosβdx

)) ∧ Vol(S3) ,

F6 = −Vol3 ∧ (d(e3A−� cosα sinβv1 ∧ w1) + e3A−� cosα cosβH3) (4.44)

+ νe−10A+2�ρ5

4 sin2 α

(
d(e3A−� cosα cosβ) ∧ dρ

− e−A+�

cosα sinβ
d(e3A−� cosα cosβ) ∧ dx

)
∧ Vol(S2) ∧ Vol(S3)

where (4.38g) can be expressed in terms of F0 as

ρ
√

sinβ∂ρ(ρe2A sinα) + ν

2
F0

e
1
2 A+ 3

2 � sin2 α
√

cosα cosβ

�
= 0. (4.45)

Imposing that F0 is constant together with (4.43a)–(4.43c) and (4.45) then implies dH = 0 and 
the Bianchi identities of the remaining fluxes. This system is quite complicated, however taking 
inspiration from section 4.1 of [36] (which re-derives [49]) we anticipate that the system can be 
further simplified if we treat the cases F0 = 0 and F0 
= 0 separately.

4.2.3. Subcase F0 = 0
If we set F0 = 0 then (4.45) and (4.44) impose that

ρ e2A sinα = L2, dL = 0 (4.46)

This leaves (4.43a)–(4.43c) to solve. We first integrate (4.43a) as

eA−C sinα = c, dc = 0, (4.47)
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then use it to express (4.43b) as

c∂x

(
e−5A+�

cosα sinβ�

)
+ ν

1

ρ
∂ρ

(
e−3A+� cosα cosβ

�

)
= 0. (4.48)

We note that this defines an integrability condition that we can solve by introducing an auxiliary 
function h(ρ, x) such that

c
e−5A+�

cosα sinβ�
= ν

ρ
∂ρh,

e−3A+� cosα cosβ

�
= −∂xh. (4.49)

Plugging these definitions into (4.43c) and making use of (4.46)–(4.47) we arrive at

c2∂2
xh + 1

ρ
∂ρ(ρ∂ρh) = 0. (4.50)

This is a 3d Laplacian expressed in axially symmetric cylindrical polar coordinates (up to rescal-
ing x). Solution in this class are in one to one correspondence with solution to this Laplace 
equation. The physical data can be expressed in terms of h and the 2 constants (c, L), as

L4e−4A = ρ2 sin2 α, e−�+5A = ν c ρ

cosα sinβ∂ρh�
, � = 1 − c3ρ(∂ρh)2

L4∂ρh(1 − cρ∂ρh)
,

tanα =
√

L4(1 − cρ∂ρh)

c4ρ2(∂xh)2 + L4(1 − cρ∂ρh)2 − 1,

tanβ =
ν
√

1 − cρ∂ρh

√
L4∂ρh(1 − cρ∂ρh) − c3ρ(∂xh)2)

c
3
2
√

ρ∂xh
. (4.51)

It is interesting that this class depends on axially symmetric Laplacian, indeed the same is true of 
the class of AdS5 ×S2 solutions in IIA [50] one obtains by dimensionally reducing the M-theory 
class of Lin–Lunin–Maldecena [51]. The M-theory class actually depend on a 3d Toda equation, 
which is equivalent to the Laplacian only when one imposes an additional U(1) isometry, which 
one then uses to reduce to IIA. As the class of this section is in massless IIA it can be lifted to 
M-theory, so an obvious question poses itself: Is there a class in M-theory governed by a 3d Toda 
from which the backgrounds in this section descend? It would be interesting to look into this and 
what connection, if any, this class has to AdS5 × S2 or indeed any AdS class.

4.2.4. Subcase: F0 
= 0
We expect to be able to perform a similar simplification of the system of PDE’s for F0 
= 0

case, however up to this point we have failed to do so in general. However there is a special case 
which is far more simple, namely β = π

2 . Here (4.43a)–(4.43c) and (4.45) force

e2A = ρ

g(x)
1
4 sinα

, e�−5A = cosα sin2 α

c2ρ2 , dα = dc = 0, (4.52)

all that remains is to ensure that dF0 = 0 which is ensured as long as

g = c̃ − 2F0x cosα

c4
1

. (4.53)
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This solution has all the generic fluxes except the internal part of F6 turned on, it bears some 
resemblance to D8-branes on some sort of cone, but the precise picture depends on what values 
the free constant α takes.

We shall come back to study the solutions that follow from these massless and massive sys-
tems in [71].

5. The unique type II AdS4 × S3 background

We have classified all Mink3 × S3 with internal Killing spinors of equal norm, up to certain 
PDE determining various warp factors. As equal norms is a requirement7 for the existence of 
AdS4 it is reasonable to ask whether such solutions are contained within our classification. Any 
AdS4 solution can be expressed as a Mink3 solution, one needs only parametrise AdS as the 
Poincaré patch. This comes about quite naturally in terms of the Mink3 ×M7 set up by imposing 
that

ds2 = e2Ads2(R1,2) + ds2(M7) = e2Ã

(
r2ds2(R1,2) + dr2

r2

)
+ ds2(M6) , (5.2)

with e2Ã and M6 independent of r . As we have local expressions on M7 = S3 × M4, this makes 
our task relatively easy. A quick scan through the various cases in section 3 and 4 indicates that 
the only class that are potentially compatible with AdS4 are in sections 4.1.2 and 4.2.2 – the 
others manifestly cannot be put in the form (5.2). These are both in IIA, but closer inspection 
leads one to realise that the class of section 4.2.2 cannot work as (4.38a) would break the putative 
AdS isometry. This leaves only sections 4.1.2.

We will now show that there is a unique compact8 AdS4 solution, at least locally, for the class 
of solutions of section 4.1.2. This background corresponds to a foliation of AdS4 × S3 × S2

over an interval and is the near-horizon of a D2–D6 brane intersection, and can also be obtained 
by dimensionally reducing a certain Zk orbifold of AdS4 × S7. Starting from M-theory one 
first parameterises S7 as a foliation of S3 × S3 over a closed interval, then performs both the 
orbifolding and reduction to IIA on the Hopf fibre of one of the S3’s (see e.g. [52]) – there by 
preserving 16 supercharges. For this purpose, we take the metric (4.24), expressed in the form

ds2 = e2Ads2(R1,2) + e−A+�
(
dρ2 + ρ2ds2(S3)

)
+ e−2A(dx2

1 + dx2
2 + dx3

3) ,

and assume an AdS4 factor, which requires e2A = r2 e2Ã, with the rescaled warp factor Ã as well 
as the dilaton � undetermined functions independent of the AdS4 radial coordinate r . Further-

7 It is established in Appendix D that the 7d spinors χ1, χ2 must obey the relation |χ1|2 ± |χ2|2 = c±e±A where c±
are constants. We can, without loss of generality solve these conditions in terms of unit norm spinors χ0

i
and an angle ζ

as

χ1 = 1√
2
e

A
2

√
1 + sin ζχ0

1 , χ2 = 1√
2
e

A
2

√
1 − sin ζχ0

2 , c+ = 1, c− = e2A sin ζ (5.1)

To make a Mink3 solution AdS4 requires us to fix the dependence of e2A on the AdS radius, but since e2A sin ζ is 
constant, we must either set ζ = c− = 0 or fix ζ such that it also depends on the AdS radius. The latter contradicts the 
assumption of an SO(2, 3) isometry, so we conclude that AdS4 requires c− = 0; i.e. equal 7d spinor norms.

8 Strictly speaking section 3.1.1 contains AdS5 ×S5 which can be expressed as a non-compact AdS4 solution. We will 
disregard such higher dimensional AdS solutions.
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more, the background is only SO(2, 3) invariant if the internal metric is independent of r , which 
fixes ρ and the xi to scale as ρ ∼ r1/2 and xi ∼ r . Keeping this in mind, we parametrise

x1 = r q(μ) sin θ cosφ ,

x2 = r q(μ) sin θ sinφ ,

x3 = r q(μ) cos θ ,

ρ = r1/2 h(μ) ,

where q(μ) and h(μ) are undetermined functions of some coordinate μ, and the (θ, φ) directions 
parametrise a 2-sphere such that the R3 spanned by xi is written in polar coordinates with radius 
r q(μ). Now we have to ensure that the metric is diagonal with respect to the r-direction, i.e. set 
gr μ = 0, and that it shows the 1/r2 behaviour for grr , which amounts to imposing grr = e2Ã/r2. 
These two conditions lead to the following expressions for Ã and � in terms of q(μ), h(μ) and 
independent of (θ, φ):

e4Ã = q(μ)

(
q(μ) − h(μ)

q ′(μ)

2h′(μ)

)
,

e� = −2e−Ã q(μ)q ′(μ)

h(μ)h′(μ)
.

These expressions imply, once inserted in the first eq. of (4.15e), the following ODE for the q
and h functions:

q ′(μ)
[
h′(μ)2 + h(μ)h′′(μ)

]
= h(μ)h′(μ)q ′′(μ) ,

which can be solved in closed form as h = h
(
q(μ)

)
and also implies the Bianchi identities of the 

fluxes. As h is a function of q , rather than μ, we can use diffeomorphism invariance to fix q such 
that h is simple, without loss of generality we choose

q(μ) = 2L3

k
cos2

(μ

2

)
,

where L and k are constants. This leads to

h(μ) = −2L3/2 sin
(μ

2

)
.

The resulting metric is of the form

ds2 = 2L

k
cos

(μ

2

)[
ds2(AdS4) + L2

(
dμ2 + 4 sin2

(μ

2

)
ds2(S3) + cos2

(μ

2

)
ds2(S2)

)]
(5.3)

with fluxes

F2 = −k

2
Vol(S2) , F4 = 3

L
Vol(AdS4) . (5.4)

This is the IIA reduction of AdS4 × S7/Zk with length scale L and k D6-branes, as in eq. (2.8) 
of [52].

The fact that (θ, φ) are isometry directions of this solution means that there is an additional 
SU(2)S2 symmetry due to the round S2 factor in the metric and fluxes. The spinors of this 
solution are then charged under SU(2)S2 and just one of the SU(2)’s of S3 (see the ν dependence 
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of (4.22)), SU(2)+ say. Since S2 and S3 appear as a product the spinors are actually charged 
under SU(2)+ × SU(2)S2 which realises an enhanced SO(4) R-symmetry as required by the 
N = 4 super-conformal algebra in 3d – SU(2)−, under which the spinors are not charged, is a 
flavour symmetry.

6. Type II with a single Killing spinor

In the previous two sections, we have worked out the supersymmetry conditions making use 
of the pure spinor equations (2.4), which are valid only in case |χ1|2 = |χ2|2. Note that this 
is a necessary condition for the existence of D-branes which do not break background super-
symmetry. The supersymmetry condition for a Dp-brane is given by �(p)ε1 = ε2. Since �(p) is 
unitary, squaring this equation leads to the conclusion that left- and right-handside must have 
equal norm.9 We will examine the simplest non-equal norm case, namely the one where

ε2 = 0 . (6.1)

We could either make use of the generalised geometrical reformulation of supersymmetry which 
incorporates |χ1|2 − |χ2|2 
= 0 as deduced in appendix D, or use the actual Killing spinor equa-
tions. Considering the simplicity of this case, we will use the latter.

Much of the work has however already been done: the conditions for seven-dimensional pure 
NSNS solutions have been deduced in [29,56,57] up to some ansätze. We will merely show that 
the ansätze made in [29,56,57] (no warp factor, no external NSNS flux) are in fact enforced by 
supersymmetry, and then proceed to plug in the decomposition resulting from M7 = S3 × M4. 
This leads to a pair of explicit pure NS backgrounds: the NS5-brane and the U-dual to the IIB 
conical backgrounds of section 3.2.1. We will also analyse the seven-dimensional RR-sector, 
which is new, but the conclusion is that all RR-fluxes vanish.

6.1. Seven-dimensional decomposition

Our starting point are the democratic supersymmetry equations, which read as follows for 
ε2 = 0:(

/∂φ − 1

2
/H

)
ε1 =

(
∇M − 1

4
/HM

)
ε1 = 0 , λ /F�Mε1 = 0 . (6.2)

As can be seen, the NSNS and RR sectors decouple. We impose a similar 3 + 7 decomposition 
as before: the metric and RR flux is given by (2.1), while the Killing spinor ε1 is given by (2.2)
and ε2 = 0. We generalize the NSNS 3-form flux by allowing a term h e3AVol3.

Using the convention γμνρ = εμνρ , plugging the above decompositions into (6.2) leads to the 
following 7d equations:(

∂mφγ m − 1

12
Hmnpγ mnp + 1

2
ih

)
χ =

(
∇(7)

m − 1

8
Hmnpγ np

)
χ = 0 (6.3a)(

1

4
eAh − ieA∂mAγ m

)
χ = 0 (6.3b)

9 The argument is slightly more complicated due to the fact that Spin(1, 9) spinors do not admit a non-trivial norm, 
and hence one should decompose to Spin(9) first. See [53] for details. Also note that strictly speaking, the norms need 
only be equivalent on the brane.

Articles 207



U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JID:NUPHB AID:14363 /FLA [m1+; v1.285; Prn:6/06/2018; 11:31] P.34 (1-49)

34 N.T. Macpherson et al. / Nuclear Physics B ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

λf χ = λf γmχ = 0 . (6.3c)

From (6.3b) it follows that

∂mA = h = 0 . (6.4)

As can be seen, the NSNS and RR sector split and can thus be analysed independently.
The existence of a globally defined nowhere-vanishing Spin(7) Majorana spinor χ reduces 

the structure group of M7 to G2. More concretely, the following bilinears can be defined:

ϕmnp = −iχ†γmnpχ , (�7ϕ)mnpq = χ†γmnpqχ , (6.5)

where we have normalized χ . The other bilinears, i.e., the 1-, 2-, 5- and 6-form vanish. As has 
been deduced in [29,56,57], (6.3a) can be rewritten in terms of the G2-structure as

dϕ ∧ ϕ = d(e−2� �7 ϕ) = d(e−2�ϕ) − e−2� �7 H = 0 . (6.6)

We will analyse the solution to the NSNS sector by requiring a further splitting of M7 = S3 ×M4. 
On the other hand, we will show that the RR-fluxes vanish for any M7.

6.2. NSNS sector

Considering the case M7 = S3 × M4, we further decompose the spinor as

χ = ξ ⊗ (
sin(α/2)η + cos(α/2)γ̂ η

) + m.c., η†η = 1, η†γ̂ η = 0 , (6.7)

with m.c. the Majorana conjugate. This leads to a further reduction of the structure group. Since 
S3 is parallelisable, it has trivial structure group, leading to a Spin(4) structure group on M4. 
Generically, the structure group need not reduce on M4.10 In the case where either η+ or η− is 
nowhere vanishing, the structure group reduces to SU(2), in case both are nowhere-vanishing, 
the structure group is trivial. As everywhere else, our analysis is purely local and we will work 
with a local trivial structure, parametrising possible vanishing of either chiral spinor by the an-
gle α.

First, as in [58], we make use of an auxiliary SU(3)-structure (J, �) to express the 
G2-structure as

ϕ = −v2 ∧ J − Im�, �7 ϕ = 1

2
J ∧ J + Re� ∧ v2 . (6.8)

Next, we decompose the SU(3)-structure in terms of the vielbeine as

J = −1

2
(K1 ∧w1 +K2 ∧w2 +K3 ∧v1), � = eiα(

K1

2
+ iw1)∧ (

K2

2
+ iw2)∧ (

K3

2
+ iv1)

(6.9)

Inserting this into (6.6), one finds

10 Note that on any M7 with a spin structure, an SU(2)-structure can be found [54] [55]. However, this is not necessarily 
the structure group defined by the spinors we are making use of, and so even when splitting M7 = M3 × M4 with M3
parallelisable, M4 need not admit a globally well-defined SU(2)-structure; consider for example M7 = S3 × S4.
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d(e3C−2� cosαv2) = d(e2C−2�ui) + νeC−2�(2ui ∧ v2 + sinαεijkuj ∧ uk) = 0 , (6.10a)

d(e2C−2�(sinαui ∧ v2 + 1

2
εijkuj ∧ uk)) − νεijke

C−2� cosαuj ∧ uk ∧ v2 = 0 , (6.10b)

dα ∧ v1 ∧ w1 ∧ w2 = 0 , u = (v1,w1,w2), (6.10c)

e−2� �7 H = −d(e−2� cosαv1 ∧ w1 ∧ w2) − νVol(S3) ∧ d(e3C−2� sinα). (6.10d)

When α 
= π
2 , by taking linear combinations, exterior derivatives and wedge products with the 

vielbein of the equations in (6.6), one can derive

εijk

[
d(eC−� cosα) − νe−�v2

] ∧ uj ∧ uk

+ e5C+12� cos4 α
[
d(e−3C+2� secα tanα) ∧ v2] ∧ ui = 0,

where, since ui form a basis of independent 1-forms, the terms in square parentheses must vanish. 
This is sufficient to conclude that

dα = 0 , C = C(ρ) , � = �(ρ) , ρ = eC−� . (6.11)

It is then not hard to establish that

dui ∧ uj = 0 , i 
= j, (6.12)

in a similar fashion. This means we can locally parametrise

v2 = ν secαe�dρ , dui = ciεijkuj ∧ uk , dci = 0 . (6.13)

Plugging this back into (6.6) we find that

ci = e−Cν tanα, (6.14)

so either dC = 0 or c = α = 0.

Case 1: When α = 0, ui are the vielbeine of T 3 so we can simply take

ui = dxi. (6.15)

All that is left to do is calculate H and impose its Bianchi identity. We find

H = ν∂ρ(e2�)ρ3Vol(S3) . (6.16)

Closure of the flux then implies that e2� is harmonic, leading to

e2� = g2
s

(
1 + c

ρ2

)
, gs, c ∈ R , (6.17)

which is consistent with the definition of ρ. Finally, we note that the metric is given by

ds2 = ds2(R1,5) + e2�
(
dρ2 + ρ2ds2(S3)

)
. (6.18)

This is an NS5-brane, dual to the D5-brane solution in section 3.1.2 [41].

Case 2: When 0 < α < π
2 , ui span the vielbeine of another S3 so we take

ui = eC̃

2
K̃i, dK̃i + ν̃

2
εijkdK̃j ∧ dK̃k, dC̃ = 0 , (6.19)
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where consistency requires that

ν̃eC cosα + eC̃ν sinα = 0 , (6.20)

and find

H = −2e3C∂ρ(e−�) cos2 αVol(S3) − 2e3C̃∂ρ(e−�) cosα sinαVol(S̃3) . (6.21)

By definition of ρ, the Bianchi identity is satisfied. After redefining r = exp
(
e−C cosαρ

)
, it 

follows that the metric is given by

ds2 = ds2(R1,2) + dr2 + e2Cds2(S3) + cot2 αe2Cds2(S̃3) . (6.22)

Note that in IIB, this solution can be obtained from the solution of section 3.2.1 by means of the 
following S-duality transformation (up to redefining some constants):

� → −� , ds2 → e−�ds2 , F3 → −H . (6.23)

6.3. RR-sector

The NSNS sector has been analysed by imposing a further decomposition Spin(7) →
Spin(3) × Spin(4) on the spinor. On the other hand, we will analyse the RR-sector in full gen-
erality.

Let us consider the RR-flux constraints equations (6.3c), repeated here for convenience:

λ
f χ = λ
f γmχ = 0 . (6.24)

For type IIA, we have that

λ
f = f0 + −
f2 − i
f3 − i
f1 , (6.25)

where we have defined f3 = �7f4, f1 = �7f6. For type IIB, one finds

λ
f = 
f1 − 
f3 − i
f2 − if0 , (6.26)

with f2 = �7f5, f0 = �7f7, hence up to some field redefinitions, the supersymmetry constraints 
are identical. The fluxes, a priori irreducible representations of SO(7), decompose into represen-
tations of G2 as follows: 7 → 7, 21 → 7 + 14, 35 → 1 + 7 + 27. Concretely, we parametrise

f2|mn = ϕmnpf
p

2 + f2|mn

f3|mnp = f3ϕmnp + ψmnpqf
q
3 + f3|q[mϕ

q
np] ,

(6.27)

where the 14 satisfies f2|mn = 1
2ψmnpqf

pq

2 and the 27 is corresponded to a symmetric traceless 
2-tensor. Furthermore, we have introduced the notation ψ = �7ϕ for convenience. Making use of 
the G2-structure identities (A.5), (A.6), we find


f1χ = f1|mγ mχ 
f1γmχ=f1|mχ − iϕmnpf n
1 γ pχ


f2χ = 3if2|mγ mχ 
f2γmχ=3if2|mχ − ϕmnpf n
2 γ pχ − 2f2|mnγ

nχ


f3χ = 7if3χ − 4f3|mγ mχ 
f3γmχ= − if3γmχ + 4f3|mχ + 6if3|mnγ
nχ .

(6.28)

Inserting the above into (6.24) and comparing representation by representation, it follows that all 
RR fluxes vanish.
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Appendix A. Conventions & identities

We decompose ten-dimensional gamma matrices as

�μ = σ3 ⊗ eAγμ ⊗ I , �m = σ1 ⊗ I ⊗ γm , (A.1)

and seven-dimensional gamma matrices as

γ (7)
α = eCσα ⊗ γ̂ , γ (7)

a = I ⊗ γa, B7 = σ2 ⊗ B4, B4B
∗
4 = −I . (A.2)

A.1. M7

We consider gamma matrices satisfying

γmnpqrst = iεmnpqrst , γ(7−n) = (−1)
1
2 n(n−1)i �7 γ(n) . (A.3)

A nowhere-vanishing Spin(7) spinor defines a G2-structure on M7 by means of the bilinear

ϕmnp = −iχ†γmnpχ . (A.4)

Defining ψ = �7φ = χ†γmnpqχ , the G2-structure satisfies the following identities [59]:

ψmnrsψ
rs

pq = −2ψmnpq + 4δmpδnq − 4δmqδnp ,

ψmnrsϕ
rs

p = −4ϕmnp ,

ϕmrsϕ
nrs = 6δn

m ,

(A.5)

as well as

γmnχ = iϕmnpγ pχ ,

γmnpχ = iϕmnpχ − ψmnpqγ qχ ,

γmnpqχ = −4iϕ[mnpγq]χ + ψmnpqχ .

(A.6)
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A.2. S3

We consider Pauli-matrices playing the role of gamma-matrices. They satisfy

σαβγ = iεαβγ , σ(3−n) = (−1)
1
2 n(n−1) �3 σ(n) , (A.7)

with α, β, γ = 1, 2, 3 indices on S3. The non-vanishing spinor bilinears of S3 are given by

ξc†σαξ = 1

2

(
Kα

1 + iKα
2

)
, ξ†σαξ = 1

2
Kα

3 . (A.8)

The real 1-forms Ki , i = 1, 2, 3, define a trivial structure on S3 (i.e., a vielbein, up to normali-
sation). Note that S3 is parallelisable and hence the trivial structure is globally well-defined. We 
will always normalise the volume form as

K1 ∧ K2 ∧ K3 = −8Vol(S3) , (A.9)

regardless of which specific vielbein is used.

Appendix B. The bispinors of M4

We consider gamma matrices satisfying

γabcd = εabcd , γ(4−n) = (−1)
1
2 n(n+1) �4 γ(n)γ̂ , (B.1)

with γ̂ = γ1234 the chirality matrix. Given a globally well-defined nowhere vanishing chiral 
spinor η+, one can construct the bilinears

Jab = iη
†
+γabη+ , ωab = iη

c†
+ γabη+ (B.2)

which furnish an SU(2)-structure. Given two globally well-defined nowhere vanishing chiral 
spinors of opposite chirality, the structure group reduces to a trivial structure [60]. Generically, 
supersymmetry requires a nowhere vanishing spinor η, which can admit a chiral locus. This 
ensures that, although the structure group of M4 cannot be globally reduced, it is possible to re-
duce the structure group of the generalised cotangent bundle T M4 ⊕ T ∗M4 to SU(2) × SU(2), 
completely analogously to the well-known situation of SU(3)-structures [30]. Since the super-
symmetry constraints are local, we will always work with the vielbeine determining the local 
trivial structure. Using the conventions of [61] with η = (η+, η−), we set

v = v1 + iv2 = η
†
−γaη+dxa, w = w1 + iw2 = η

c†
− γaη+dxa . (B.3)

Although some care must be taken on the chiral locus, where the above 1-forms all vanish, it 
turns out that no solutions exist on the chiral locus, as discussed in sections 3 and 4. We can 
expand the locally defined 4d components of the Killing spinors η1,2 in terms of η as

η†η = 1 , η†γ̂ η = 0 (B.4)

as

η1 = cos
(α

2

)
η + sin

(α

2

)
γ̂ η , η2 = aη + bγ̂ η + cηc + dγ̂ ηc (B.5)

where a, b, c and d are subject to

|a|2 + |b|2 + |c|2 + |d|2 = 1 . (B.6)
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We can then calculate the 4d bispinors appearing in (3.1a)–(3.1f) and (4.1a)–(4.1f), where to do 
so we find it useful to parametrise

a = a1 + ia2 , b = b1 + ib2 , c = c1 + ic2 , d = d1 + id2 , (B.7)

for ai, bi, ci and di real. However we first note that in both IIA and IIB we must solve the 0-form 
constraints

(ψ2
γ̂
)0 = (Imψ1

γ̂
)0 = 0 , (B.8)

which reduce to

b2 cos
α

2
+ a2 sin

α

2
= d2 cos

α

2
+ c2 sin

α

2
= d1 cos

α

2
+ c1 sin

α

2
= 0 . (B.9)

We can solve these in general by fixing

a2 = λ1 cos(
α

2
) b2 = − λ1 sin(

α

2
) c1 = λ2 cos(

α

2
) ,

c2 = −λ3 cos(
α

2
) d1 = − λ3 sin(

α

2
) d2 = − λ1 sin(

α

2
) ,

(B.10)

which turns (B.6) into

a2
1 + b2

1 + λ2
1 + λ2

2 + λ2
3 = 1. (B.11)

In terms of this parametrisation the 4d bispinors are given by

ψ1+ = a1 − i λ1 − i b1v1 ∧ v2 − (λ2 − iλ3)v1 ∧ (w1 − i w2) + (i a1 + λ1)w1 ∧ w2

+ b1v1 ∧ v2 ∧ w1 ∧ w2 ,

ψ1− = (a1 − i λ1)v1 − i b1v2 − (λ2 − i λ3)(w1 − i w2) + (i a1 + λ1)v1 ∧ w1 ∧ w2

+ b1v2 ∧ w1 ∧ w2 ,

ψ2+ = −(λ2 + iλ3) − (a1 + i λ1)v1 ∧ (w1 − i w2) − i b1v2 ∧ (w1 − i w2)

− i(λ2 + i λ3)w1 ∧ w2 ,

ψ2− = −(λ2 + i λ3)v1 − (a1 + i λ1)(w1 − i w2) − i b1v1 ∧ v2 ∧ (w1 − i w2)

+ (λ3 − i λ2)v1 ∧ w1 ∧ w2 , (B.12)

ψ1
γ̂+ = b1 − (i a1 + λ1)v1 ∧ v2 − i (λ2 − i λ3)v2 ∧ (w1 − i w2) + i b1w1 ∧ w2

+ (a1 − i λ1)v1 ∧ v2 ∧ w1 ∧ w2 ,

ψ1
γ̂− = −b1v1 + (i a1 + λ1)v2 + (λ3 + i λ2)v1 ∧ v2 ∧ (w1 − i w2) − i b1v1 ∧ w1 ∧ w2

− (a1 − i λ1)v2 ∧ w1 ∧ w2 ,

ψ2
γ̂+ = (i λ2 − λ3)v1 ∧ v2 − b1v1 ∧ (w1 − i w2) − i(a1 + i λ1)v2 ∧ (w1 − i w2)

− (λ2 + i λ3)v1 ∧ v2 ∧ w1 ∧ w2 ,

ψ2
γ̂− = (λ3 − i λ2)v2 + b1(w1 − i w2) + i(a1 + iλ1)v1 ∧ v2 ∧ (w1 − i w2)

+ (λ2 + i λ3)v2 ∧ w1 ∧ w2 .
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Appendix C. The SU(2) doublets of S3

There exist two independent spinors on S3 that obey the Killing spinor relations

∇aξ± = ± i

2
γaξ±, (C.1)

each of which preserves two supercharges. Additionally the global isometry group of S3 can be 
decomposed as SO(4) = SU(2)+ × SU(2)−, so S3 supports two sets of SU(2) Killing vectors 
Ki±, i = 1, 2, 3, that are dual to one forms that obey

dK±
i ± 1

2
εijkK

±
j ∧ K±

k , (C.2)

i.e. the right-/left-invariant forms of SU(2). It is possible to use the spinors on S3 to construct 
SU(2)± doublets. Consider the following vector with spinor entries

ξα± =
(

ξ±
ξc±

)α

. (C.3)

These transform under the action of the spinorial Lie derivative as11

LK±
i
ξ a± = ± i

2
(σi)

a
bξ

β
±, LK±

i
ξ a∓ = 0, (C.5)

for σi the Pauli matrices, which means that ξa± transforms as a doublet under local SU(2)±
transformations and a singlet under SU(2)∓.

Appendix D. Supersymmetry conditions for three-dimensional external spacetimes

In [31], supersymmetry conditions for 3+7 dimensional compactifications are given in terms 
of bispinors. The repackaging of the supersymmetry conditions was done under the following 
conditions:

• The external space is Minkowski.
• The spinors have equivalent length.
• The NSNS flux H does not have an external component.

In this section, we will look at relaxing the latter two conditions to obtain more general solu-
tions. Our starting point will be the ten-dimensional bispinor description of the supersymmetry 
constraints, as described in [37]:

11 The spinorial Lie derivative along a Killing vector K is defined as

LKε = Kμ∇με + 1

8
(dK)μνγ μνε. (C.4)

The easiest way to see that this leads to the claimed transformation property, is to parametrise the vielbein on S3 as 
e1 = 1

2 dθ, e2 = 1
2 sin θdφ, e3 = 1

2 (dψ + cos θdφ) and take the flat space gamma-matrices to be the Pauli matrices 

σi . Then (C.1) is solved by ξ+ = e
i
2 θσ1e

i
2 φσ3ξ0+, ξ− = e

− i
2 ψσ3ξ0− for ξ0± constant 2d spinors. The SU(2)± forms are 

then precisely K+
i

= −iTr(σidgg−1), K−
i

= −iTr(σig
−1dg) for g = e

i
2 φσ3e

i
2 θσ2e

i
2 ψσ3 . The result is then not hard 

to show.
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dH

(
e−��

) + K̃ ∧ F + ιKF = 0 (D.1a)

dK̃ = ιKH (D.1b)

LKg10 = 0 (D.1c)(
e+1 · � · e+2,�

MN

(
±dH

(
e−�� · e+2

) + 1

2
e�d†

(
e−2�e+2

)
� − F

))
= 0 , (D.1d)(

e+1 · � · e+2,

(
dH

(
e−�� · e+1

) − 1

2
e�d†

(
e−2�e+1

)
� − F

)
�MN

)
= 0 , (D.1e)

with

� = ε1 ⊗ ε̄2 , KM = 1

32
(ε̄1�Mε1 + ε̄2�Mε2) , K̃M = 1

32
(ε̄1�Mε1 − ε̄2�Mε2) .

(D.2)

The final two equations are known as the pairing equation; we refer to [37] for more details, and 
will follow along the lines of section 4.2 in the following.

We consider the case where the Killing spinors are given by (2.2). Due to the properties of 
Spin(1, 2), we can define

1

2
ζ̄ γμζ = vμ ,

1

2
ζ̄ γμνζ = (�3v)μν , (D.3)

with the other bilinears vanishing. Since we are considering flat space, ζ are covariantly constant, 
hence dv = 0. Making use of the spinor decomposition, it follows that

8e−A� = v ∧ �∓ − �3v ∧ �± , K = 1

8
eA(|χ1|2 + |χ2|2)v , K̃ = 1

8
eA(|χ1|2 − |χ2|2)v,

(D.4)

where we have defined �+ + i�− = 8e−Aχ1 ⊗ χ
†
2 and K, K̃ should be read as 1-forms in ten 

dimensions. Using the flux decomposition

F = f + e3AVol3 ∧ �7λ(f ) , H = H3 + e3AhVol3 . (D.5)

We will first solve (D.1c): since by construction, v, K are Killing vectors, we must have

|χ1|2 + |χ2|2 = c+eA. (D.6)

Next let’s consider (D.1b), which leads to

c+e3Ah = 0 , |χ1|2 − |χ2|2 = c−e−A . (D.7)

Next, let us consider (D.1a). We find that

dH3

(
e3A−��±

)
= c+e3A �7 λ(f )

dH3

(
e2A−��∓

)
= c−f .

(D.8)

In addition, the fact that c− 
= 0 does not change the argument of [37], so the pairing equations 
remain unchanged, leading to

(f,�∓) = 0 . (D.9)
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Appendix E. M-theory

The focus of this paper are backgrounds in type IIA and type IIB. In this appendix, we will 
discuss M-theory backgrounds on R1,2 × S3 × M5. Given equivalent internal spinor norms, our 
(massive) IIA classification is complete (up to finding solutions to PDE). Therefore, a significant 
number of backgrounds one would obtain from a similar analysis of M-theory are those which 
one can obtain from uplifting our massless IIA backgrounds. Novel solutions from a complete 
M-theory analysis would be backgrounds satisfying one of the two conditions: either M5 does 
not admit an S1 factor to be integrated out to perform the dimensional reduction to IIA, or the 
internal component of the Killing spinor on M8 = S3 × M5 is such that after the reduction, the 
resulting seven-dimensional internal components of the IIA spinors are not of equal norm.

Such a full M-theory classification is beyond the scope of this paper. Instead, we aim to make 
contact with the literature of M-theory on R1,2 × M8, which is much studied (see for example 
[62–67]). We will derive the decomposed supersymmetry conditions, and give several simple 
classes of solutions.

For N = 1 solutions to the supersymmetry constraints on R1,2 × M8, the Killing spinor ε
decomposes as

ε = ξ ⊗ (χ+ + χ−) , (E.1)

where ξ is a Majorana spinor of Spin(1, 2) and χ± are chiral Majorana spinors of Spin(8). 
Generically, χ± can have zeroes, and the structure group of M8 is SO(8), although a 
Spin(7)-structure can be defined on the auxiliary space M8 × S1 [66]. In the case where one 
of the two does not vanish, the structure group reduces to Spin(7) [65]. If both chiral spinors 
have no zeroes, both of them define a Spin(7)-structure: the intersection of the two leads to a 
reduction of the structure group to G2.12 The reduction of the structure group leads to the exis-
tence of globally defined invariant tensors. Instead, we will work locally, and consider patches 
where either one or both are non-zero.

E.1. Spin(7) holonomy

Let us first examine the case with

ε = ζ ⊗ χ+ . (E.2)

Following the conventions of [65], the general solution to the M-theory supersymmetry con-
straints with these ansätze is that

ds2 = e2�ds2(R1,2) + e−�ds2(M8) , G = Vol3 ∧ d(e3�) + F , (E.3)

where ds2(M8) a metric of Spin(7) holonomy. The four-form F lies in the 27 of Spin(7), i.e., 
it satisfies

F
pqr

m�npqr = 0 , (E.4)

with �mnpq = χ̄γmnpqχ the invariant four-form defining the Spin(7)-structure. In addition, the 
Bianchi identity and equation of motion for F require that F is harmonic and satisfies

12 Note that this is only the case for two Spin(7)-structures defined in terms of opposite chirality spinors. Given two 
same chirality globally well-defined nowhere vanishing spinors, the structure group instead reduces to Spin(6) � SU(4).
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d(�8d(e−3�)) + 1

2
F ∧ F = 0 (E.5)

away from M2-brane sources.
Let us now impose M8 = S3 × M5. The internal metric and Killing spinor decompose as

ds2(M8) = e2Cds2(S3) + ds2(M5) , χ+ =
(

1
0

)
⊗ (ξ ⊗ η + ξc ⊗ ηc) , (E.6)

and the gamma matrices decompose as

γ (8)
α = σ1 ⊗ σα ⊗ I , γ (8)

a = σ2 ⊗ I ⊗ γa , B(8) = σ3 ⊗ σ2 ⊗ B5 , (E.7)

with the charge conjugation matrix satisfying B5∗ = −B5, α an index on S3 and a an index on 
M5. The pseudoreal Spin(5) spinor η of unit norm gives rise to an SU(2)-structure on M5, via 
[68]

η ⊗ η† = 1

4
(1 + V ) ∧ e−iJ , η ⊗ ηc† = 1

4
(1 + V ) ∧ ω . (E.8)

The (local) SU(2)-structure consists of a real one-form V , real two-form J and a complex two-
form ω such that J ∧ J = 1

2ω ∧ ω∗ and ιV J = ιV ω = J ∧ ω = ω ∧ ω = 0.
By making use of this decomposition, the Spin(7) four-form decomposes in terms of the 

I × SU(2)-structure as

� = −1

2
J ∧ J + eC̃

2
V ∧ (K1 ∧ Reω + K2 ∧ Imω + K3 ∧ J ) (E.9)

− ν
e2C̃

4
(dK1 ∧ Reω + dK2 ∧ Imω + dK3 ∧ J ) − νe3C̃V ∧ Vol(S3) . (E.10)

Using the decomposed �, we examine the supersymmetry conditions. First, we consider the flux 
component F , which we decompose as

F = e3CVol(S3) ∧ F1 + �5F̃1 , (E.11)

with F1, F̃1 one-forms on M5. Inserting this and (E.9) into (E.4), it follows from (m, n) = (a, b)

that F1 ∼ F̃1, Fa
1 Va = 0 and from (m, n) = (α, a) that Fa

1 ωab = Fa
1 ω∗

ab = Fa
1 Jab = 0. Hence 

F1 = F̃1 = 0, hence F = 0. The equation of motion for the flux (E.5) thus reduces to the follow-
ing constraint on the warp factors:

d(e3C �5 d(e−3�)) = 0 . (E.12)

Next, the requirement that M8 is of Spin(7) holonomy is equivalent to the closure of �, which 
is equivalent to

d(e3C̃V ) = d(e2C̃J ) + 2νeC̃V ∧ J = d(e2C̃ω) + 2νeC̃V ∧ ω = d(J ∧ J ) = 0 . (E.13)

In general, this means that locally V = e−3Cdτ , and we will write

ds2(M8) = e2Cds2(S3) + e−6Cdτ 2 + ds2
4 (E.14)

Let us give some simple classes of examples for which the above conditions are solved.

• In the case that C = C(τ), the metric ds2
4 is conformally Calabi–Yau. Let J = e2(W−C)J̃ , 

ω = e2(W−C)ω̃. Then provided that we define W(τ) to satisfy
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W ′ + νe−4C = 0 , (E.15)

we find that dJ̃ = dω̃ = 0.

• By taking C = − 1
4 log(4τ), we find that dJ = dω = 0, hence ds2

4 is a Calabi–Yau metric.13

Introducing ρ = (4τ)1/4, the metric reduces to

ds2(M8) = dρ2 + ρ2e2Cds2(S3) + ds2
4 , (E.16)

and thus M8 = R4 × Y2, where Y2 is a Calabi–Yau two-fold.

• Next, let us examine Sasaki–Einstein structures, as well as a class of generalizations. It can 
be shown that any five-dimensional Sasaki–Einstein can be defined by means of a set of real 
forms (Ṽ , ωj ), j = 1, 2, 3 with Ṽ a one-form and ωj two-forms. These satisfy [15]

dω1 = d(ω2 + iω3) + 3iṼ ∧ (ω2 + iω3) = 0 . (E.17)

A more general class of spaces are the so-called hypo manifolds [69], satisfying dω1 = d(Ṽ ∧
ω2) = d(Ṽ ∧ ω3) = 0, which themselves are a subclass of balanced manifolds [70], satisfying

d(ω1 ∧ ω1) = d(Ṽ ∧ ω2) = d(Ṽ ∧ ω3) = 0 . (E.18)

By setting J = ω1, ecV = Ṽ , Reω = ω2, Imω = ω3, it follows that any solution to the super-
symmetry constraints is a balanced metric. On the other hand, any solution to the supersymmetry 
constraints which is hypo automatically is such that ds2

4 is Calabi–Yau. This leads to the conclu-
sion that the spinors do not define a Sasaki–Einstein on M5, as the base space of a Sasaki–Einstein 
manifold is not Ricci-flat. Another way to see this is to note that Sasaki–Einstein metrics can be 
written as a fibration over a Kähler–Einstein base, but it is clear that since the supersymmetry 
constraints are invariant under permutations of (J, Reω, Imω), ds2

4 cannot be non-Calabi–Yau 
Kähler.

E.2. G2-structure

Next, let us examine the case where both internal chiral Killing spinors are (locally) non-
vanishing. Again following [65], the Killing spinor is given by

ε = e−�θ ⊗ (χ+ + χ−) , (E.19)

leading to the solution

ds2 = e2�

(
ds2(R1,2) + ds2(M8)

)
, G = e3�(Vol3 ∧ f + F). (E.20)

This time, the metric is not of special holonomy. Instead, it allows a G2-structure with non-trivial 
torsion. The norms of χ± can be parametrised as

|χ±|2 = 1 ± sin ζ , (E.21)

with sin ζ a function of M8 such that the norms of χ± are non-vanishing. The bilinears of χ±
defining the G2-structure are given by

13 We have redefined τ to absorb the sign ν.
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Km = 1

cos ζ
χ

†
+γ (8)

m χ−, ϕmnp = 1

cos ζ
χ

†
+γ (8)

mnpχ−. (E.22)

In terms of these, the constraints

d(e3� cos ζK) = 0 , (E.23a)

K ∧ d(e6�ιK �8 ϕ) = 0 , (E.23b)

d(e12� cos ζ ϕ ∧ ιK �8 ϕ) = 0 , (E.23c)

cos ζd(ϕ) ∧ ϕ + 4 �8 dζ − 2 cos ζ �8 f = 0 , (E.23d)

d(e3� sin ζ ) − e3�f = d(e6� cos ζϕ) + e6� �8 F − e6� sin ζF = 0, (E.23e)

are locally equivalent to the supersymmetry conditions.
Next, we split M8 = S3 × M5, leading to the following decomposition of the metric and flux:

ds2(M8) = e2Cds2(S3) + ds2(M5) , F = e3CF1 ∧ Vol(S3) + F4 . (E.24)

The spinors decompose as

χ+ = √
1 + sin ζ

(
1
0

)
⊗(ξ ⊗η1 +ξc ⊗ηc

1) , χ− = √
1 − sin ζ

(
0
1

)
⊗(ξ ⊗η2 +ξc ⊗ηc

2)

(E.25)

and the gamma matrices again decompose as (E.7). The Spin(5) spinors can be expanded in a 
common basis as

η1 = η, η2 = a0η + aηc + b

2
wη, |a0|2 + |a|2 + |b|2 = 1 (E.26)

where b can be made real by rotating the 1-form w and η is unit norm. We assume w = w1 + iw2
is locally non-vanishing.
As a result, a second locally non-vanishing 1-form can be defined as

u = 1

2
ιw∗ω , (E.27)

with ω defined as in (E.8). We thus see that the local SU(2)-structure defined on M5 by η reduces 
further to a trivial structure, with the local vielbein defined by (V , w1, w2, u1, u2).

We now express the G2-structure (E.22) in terms of the trivial structure of S3 × M5. The first 
bilinear we calculate is

K = eC

2
(Ima0K1 + Rea0K2 − ImaK3) − bu2 − ReaV, (E.28)

and the only way to make this compatible with (E.23a) is to set

a0 = Ima = 0 (E.29)

so that the spinors η1,2 are nowhere parallel. We are now free to parametrise

b = cosα, Rea = sinα (E.30)

and rotate to a frame where
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K = V. (E.31)

Having done this the other bilinears take the form

ϕ = − cosαe1 ∧ e2 ∧ e3 − e3C sinαVol(S3) − ν
e2C

4
cosαei ∧ dKi,

− eC

2
Ki ∧ (u1 ∧ ei + 1

2
εijk sinα ej ∧ ek),

ιK �8 ϕ = u1 ∧ (sinαe1 ∧ e2 ∧ e3 − e3C cosα ∧ Vol(S3))

+ ν
e2C

4
(sinα u1 ∧ ei + 1

2
εijke

j ∧ ek) ∧ dKi − eC

4
cosαεijku1 ∧ ej ∧ ek ∧ Ki,

(E.32)

where we have defined

e = (w1, w2, − u2), (E.33)

for ease of presentation. Remark that

ϕ ∧ ιK �8 ϕ = 7ν Vol7, (E.34)

where Vol7 is the volume form of the manifold spanned by the warped left-invariant forms of S3

and the vielbein, with orientation{
eC

2
K1,

eC

2
K2,

eC

2
K3, u1, e

1, e2, e3
}

.

Inserting these definitions for ϕ and ιK �8 ϕ into (E.23a)–(E.23e) lead to the 5d conditions

d(e3� cos ζV ) = d(e6�+3C cosαu1) ∧ V = d(
e−6�−3C

cos3 α cos2 ζ
u1) ∧ e1 ∧ e2 ∧ e3 = 0 ,

(E.35a)

d(e6�+2C cos ζ cosαei) + ν e6�+C cos ζ(2u1 ∧ ei + sinαεijke
j ∧ ek) = 0 , (E.35b)(

d(e6�+2C(sinαu1 ∧ ei + 1

2
εijke

j ∧ ek)) + νe6�+C cosαεijku1 ∧ ej ∧ ek

)
∧ V = 0 ,

(E.35c)

d(e−2C cosαεijke
j ) ∧ ek ∧ u1 ∧ V = εijku1 ∧ du1 ∧ ej ∧ ek = 0 , (E.35d)

− 2 cos ζdα ∧ e1 ∧ e2 ∧ e3 + 2 �5 dζ − cos ζ �5 f = d(e3� sin ζ ) − e3�f = 0 ,

(E.35e)

d(e6�+3C cos ζ sinα) + e6�+3C(− �5 F4 + sin ζF1) = 0 , (E.35f)

d(e6� cos ζ cosαe1 ∧ e2 ∧ e3) + e6�(�5F1 − sin ζF4) = 0 , (E.35g)

where we have used that cos ζ 
= 0 and one can show that cosα = 0 is inconsistent with super-
symmetry. In addition, the Bianchi identities and equations of motion for the flux reduce to

220 3.6. Mink3 × S3 solutions of type II supergravity



U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JID:NUPHB AID:14363 /FLA [m1+; v1.285; Prn:6/06/2018; 11:31] P.47 (1-49)

N.T. Macpherson et al. / Nuclear Physics B ••• (••••) •••–••• 47

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

d
(
e3�f

)
= d

(
e3�+3CF1

)
= d

(
e3�F4

)
= 0

d
(
e6�+3C �5 F4

)
− e6�+3Cf ∧ F1 = 0

d
(
e6� �5 F1

)
− e6�f ∧ F4 = 0

d
(
e6�+3C �5 f

)
+ e6�+3CF1 ∧ F4 = 0 .

(E.36)

Note that the signs are such that supersymmetry together with the Bianchi identities imply the 
first two equations of motions. All Hodge duals in the above are with respect to the unwarped 
five-dimensional metric.
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4. Results

In this thesis we have studied a number of AdS solutions to type II supergrav-
ity, obtained applying NATD to some relevant backgrounds, in addition to
classifying certain Mink3 solutions. For the newly generated AdS geometries,
we systematically extracted information from the supergravity fields, intend-
ing to provide some basic hints about the putative dual SCFT. This included
the derivation of the quantised charges and holographic central charge1 or
free energy.

In the examples considered, a non-flat Kalb-Ramond B2 field was gener-
ated, carrying NS5-brane charge along non-trivial 2-cycles in the new back-
ground. In some cases, the 3-sphere on which NATD was applied shrank
to a point in the seed geometry, which was then mapped to a singularity in
the dual background. This was interpreted as localized NS5-brane sources
putting an end to the space, with the NS-NS sector behaving as that of a
smeared NS5 near-horizon geometry close to the singularity, as happens also
under ATD.

Advancing along the non-compact direction ρ arising from NATD re-
quired applying large gauge transformations repeatedly to the Kalb-Ramond
field B2, as we moved from a certain interval in this direction to the next2.
Each LGT has the effect of inducing one unit of NS5-brane charge and also
shifting the Page charges associated to the RR-fluxes, which are the ones
being quantized in the presence of B2. In particular, if the original back-
ground had colour D(p-1)-branes, in the new solution we typically found
colour Dp- and D(p+2)-branes wrapping the same directions, up to an extra
two-sphere for the higher-dimensional branes. Their charges were related as
Np = nNp+2, where n is the number of LGTs applied. Indeed, these two
different kind of branes are thought to be associated to the same degrees

1The prescriptions used are explained in section 4.2 of [42] and the references therein.
2Large gauge transformations are introduced in order to enforce the 0 ≤

∣∣∣∫Σ2
B2

∣∣∣ ≤
4π2α′ condition, where Σ2 is any non-trivial two cycle for which the holonomy of B2 is
non-vanishing. This is a requirement for the partition function of an Euclidean string
winding around Σ2 to be well-defined.
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of freedom, in the sense that the charge of the Dp-branes are dissolved in
D(p+2)-branes. For this reason, we picked up only the lower-dimensional
realization of the colour branes for the holographic interpretation of the new
backgrounds.

As a result, brane set-ups read-off from these charges were not only infi-
nite3 but also presented an increasing number of colour branes as we move
along ρ, realizing an infinite linear quiver with nodes of increasing rank.

Precisely, it was for the IIA N = 1 AdS5 and the IIB N = 4 AdS4 solu-
tions, that we also managed to regularize the brane set-ups by an adequate
introduction of flavour branes. We could therefore propose consistent, finite
dual quiver field theories.

In particular, for the background obtained in [13, 12] applying NATD on
S3 ↪→ T 1,1 → S2 of the AdS5 × T 1,1 gravity dual of the Klebanov-Witten
theory [36], we obtained in [24] (section 3.5) a D4-NS5-NS5’ brane set-up,
with NS5 and NS5’-branes mutually transversal and also perpendicular to
the D4-branes, whose number augments every time an NS5 is crossed. This
generalises [72], where the number of D4’s is constant, but is still expected
to realize a mass deformation of some N = 2 theory realized by a D4-NS5
system with all NS5-branes parallel among them4.

The regularisation of this brane set-up and the corresponding linear quiver
was achieved through the addition of flavour D6-branes, but only after a spe-
cific brane re-ordering, compatible with the fixed point gravity dual. This
was necessary for the quiver description to be compatible with a mass defor-
mation5, taking as UV theory the N = 2 quiver theories of [25]. We relied on
the exact field theoretical central charges computed via a-maximization at
both UV and IR fixed points [73], which were related by the Tachikawa-Wecht
relations [74], as expected for an RG flow triggered by a mass deformation.
By construction, the famous 27/32 ratio was recovered in the holographic
limit (this is implied in the Tachikawa-Wecht result), when also the field
theoretical central charges coincided with their holographic counterparts6.

3The non-compact ρ ∈ R+ direction realizes a new field-theory direction along which
the colour branes are extended. Not bounding ρ therefore implies an infinite brane set-up.

4The mass deformation is realized adding mass terms to the superpotential of theN = 2
UV theory, triggering an RG-flow to a N = 1 IR fixed-point. In the dual brane picture, one
starts with a D4-NS5 intersection with at least two mutually-parallel 5-branes orthogonal
to the D4-branes, and rotates one of the NS5’s w.r.t. the other (the angle of rotation
being related to the mass-deformation parameter) until they end up being perpendicular
between them and also to the D4-branes [37].

5In particular, a hard cut-off for the brane set-up (introducing flavours at fixed ρ
position) was not compatible with a N = 1 theory with a quartic superpotential, as
expected for the mass deformation of the cubic superpotential of the N = 2 theory.

6The holographic constrain a ≈ c for the 4D central charges holds in the long quiver



Results 227

It is worth stressing that conjecturing the supergravity background found
directly after the application of NATD to be related to a D4-NS5-NS5’ brane
set-up, allowed us to propose a consistent dual field theory, even in this
N = 1 scenario with less (super)isometries. It was indeed the relation with
N = 2 Gaiotto-Maldacena geometries, exploited through the N = 2 theories
proposed in [25], that provided the information we needed for the proposal
of the N = 1 field theory.

Regarding the previously mentioned IIB N = 4 AdS4 solution, this
was obtained in [23] (section 3.4) applying NATD on the 3-sphere of the
AdS4 × S3 × S2 background arising as the near-horizon limit of a D2-D6 in-
tersection. Supersymmetry was fully preserved by the transformation in this
case7. The new AdS4×S2×S2 geometry fitted in the classification of [32], and
the Page charges were compatible with a D3-D5-NS5 Hanany-Witten brane
set-up. The holographic dictionary of [34] eased the interpretation of the
worldvolume theory of the former brane configuration as a three-dimensional
Gaitto-Witten T ρ̂ρ (SU(N)) theory, the strong coupled fixed-point of which
would yield the N = 4 SCFT dual. The regularisation of the infinite array
of branes was achieved in this case as a hard cut-off by the addition of a
certain number of semi-inifinite D5-branes, acting as flavours, in such a way
that the linking numbers (read off from the brane set-up as described in [34])
were consistent with the conditions for the field theory to flow to a non-trivial
fixed point in the IR.

Still considering AdS4 spaces, a new N = 2 solution in 11D supergravity
supported by magnetic G4 flux was discovered in [43] (section 3.2) applying a
chain of a NATD followed by an ATD to the N = 6 AdS4×CP3 background,
the IIA reduction of the M-theory gravity dual of ABJM [58], followed by
uplitf to 11D. The new solution is found to be the only explicit example of this
class and holographic candidate for the 3d-3d duality, besides the uplift of the
Pernici-Sezgin solution. We remark that, unlike the aforementioned cases,
supersymmetry is not fully preserved, but reduced from N = 6 to N = 2
because of the NATD transformation8. The new background possesses a
U(1) ≈ SO(2) isometry interpreted as the geometrical realization of the R-
symmetry of the dual SCFT. Indeed, it rotates the pure spinors inducing a
U(1)-worth of the corresponding G-structure in N = 1 language.

limit, i.e. for a large number of nodes or, equivalently, NS5-branes [24] (section 3.5).
7The reduction to IIA of the AdS4 × S7/Zk solution already reduced supersymmetry

from N = 8 to N = 4. The resulting spinors were independent of the NATD-directions,
so that no further supersymmetry was broken by the transformation.

8It was possible to apply the second transformation, in this case an ATD, on an iso-
metric circle of the intermediate background found in [68], under which the Killing spinors
were uncharged, thus preserving the remaining supersymmetry.
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This novel N = 2 AdS4 solution belongs to the class of [45], which de-
scribes N = 2 AdS4 backgrounds with magnetic flux in 11D supergravity
whose Killing spinors satisfy the same projection conditions as M5-branes
wrapping calibrated 3-cycles (a more general class of AdS4 spaces was engi-
neered in [46], where electric flux was also allowed). The classification could
therefore include also AdS4 geometries which are not identifiable as near-
horizon limits of wrapped M5-branes. This could be the case for our N = 2
AdS4 solution, as the holographic free energy does not exhibit the expected
N3 scaling, but the N3/2 inherited from ABJM9.

Regarding AdS3×S2 geometries preservingN = (0, 4) supersymmetry, an
extension of the existing classification [55, 45] was motivated by the solution
found in [54] (section 3.1) applying NATD on one of the two 3-spheres of
the type IIB realization of the AdS3 × S3 × S3 × S1 background, supported
by D1 and D5-brane fluxes [75, 76]. Even if the new background belongs to
massive IIA, after Abelian T-dualizing twice (on different U(1) isometries), a
massless IIA solution could be reached, which allowed for and uplift to 11D
supergravity, providing a solution lying outside the Kim class [55].

Taking as an Ansatz 1/4-BPS SO(2, 2) × SO(3) invariant solutions in
11D supergravity, with the internal spinors realizing an SU(2)-structure,
three classes were identified in [56] (section 3.3): the six-dimensional internal
manifold either has an SU(3)-holonomy, i.e. Calabi-Yau, or corresponds to
an SU(2)-structure manifold with an emergent U(1) or SU(2) isometry. The
first case belongs to the Kim class, included in [45], with magnetic G4 flux
only along the S2 and where the extra U(1) isometry does not correspond
to an R-symmetry but to the M-theory circle. The latter case represents
the extension of the classification, allowing for a general, but still magnetic
G4 flux supporting an AdS3 × S2 × S2 × CY2 geometry. In this case, the
extra SU(2) isometry realizes an emergent R-symmetry, corresponding to a
large superconformal algebra [53]. This is in agreement with the holographic
central charge, whose scaling with the quantized charges (or levels of the
affine SU(2) algebras) does not change under (non-)Abelian T-dualities, nor
upon uplift to 11D. A solution within this novel class was found in [54]
applying a chain of Abelian T-dualities to the type IIB AdS3×S3×S3×S1.
It is worth highlighting that the central charge scales like c ∼ N2 instead of
N3 as expected for M5-brane geometries. Furthermore, this solution was not
considered in the wrapped M5-brane geometries of [45]. These facts point to
an unclear M5-brane origin, similarly to the case of the N = 2 AdS4 solution.

Remark however that our extension of the Kim class still lacks the gener-

9NATD does not seem to alter the scaling with the number of colour branes N of
holographic quantities computed from the volume of the internal space.
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ality required to accommodate the uplift to 11D of the non-Abelian T-dual
of AdS3 × S3 × S3 × S1, also found in [54], which does include both electric
and magnetic components for the G4 flux.

Concerning the aforementioned issues arising from the discrepancy be-
tween the expected and observed scaling for the central charges/free energies
with the quantized charges, it was observed that these holographic observ-
ables depend on the volume of the internal space. Therefore, the way the
regularization is imposed to the NATD-generated background may influence
drastically their scaling behaviour. Most typically, a hard cutoff was applied
upon computation of such an observable c, with the following effect: if the
scaling in the original background was like c ∼ N q

p with the Np the number
of colour Dp-branes, then for the new geometry it exhibited the behaviour
c ∼ n3N q

p+2 ∼ n3−qN q
p . Recall that Np = nNp+2 with n the number of

NS5-branes, due to the Myers dielectric effect relating the Dp and D(p+2)
colour branes, as explained at the beginning of this section.

However, a regularization for the geometry other than a hard cut-off may
be necessary in order to get a consistent dual field theory. An explicit exam-
ple of this was given for the newN = 4 AdS4 background in [23] (section 3.4).
Getting the holographic free-energy into the form of the field-theoretical com-
putation of [77], required quite a non-trivial (though physically motivated)
continuation of the local geometry obtained directly from NATD.

Let us remark that this regularization-scheme dependence might be caus-
ing also the discrepancy of the holographic observables of the new N = (0, 4)
AdS3 × S2 and N = 2 AdS4 solutions w.r.t. the N3 behaviour expected
for geometries arising from wrapped M5-branes [45]. On the other hand,
for c ∼ n3N q with n roughly giving the number of NS5-branes, one might
still wonder about the possibility of the corresponding geometry arising as a
near-horizon limit of some configuration of wrapped M5-branes.

The most general class of solutions considered in this thesis were type II
N > 1 backgrounds on Mink3×S3, for which a classification was initiated in
[67] (section 3.6). Several backgrounds arising as near-horizons of well-known
brane intersections were recovered in both type IIA and IIB, assuming the
two internal spinors to be of equal norm (what is a requirement for AdS
spaces), apart from pure NS backgrounds found when setting one of the
internal spinors to vanish.

Our main result is that the only type II AdS4 × S3 compact solution
is the N = 4 AdS4 obtained from the near-horizon limit of intersecting
D2–D6 branes (also as a IIA reduction of AdS4 × S7/Zk preserving N = 4
supersymmetry). Besides, we report on a novel IIA class of N = 4 solutions
on Mink3 × S2 × S3 preserving an SO(4) R-symmetry (with no emergent
AdS4 factor), with a priori all fluxes turned on. Assuming a further U(1)



230

isometry in this new class, ATD can be applied on this circle to get a new
IIB background with Mink3× S3× S3

sq, where the squashed 3-sphere admits
in general an SU(2)×U(1) isometry. For the unsquashed case, this solution
is connected by S-duality to a new pure NS background on Mink3×S3×S3.
These new solutions were found separately in our classification.



5. Conclusions

Throughout the papers in which this thesis is based, we have investigated the
power of non-Abelian T-duality as a solution generating technique in type II
supergravity, exploring the AdS/CFT correspondence for the new solutions.
These were also used to either probe known classifications, providing explicit
geometries, or challenge their generality, motivating extensions thereof.

We focused on NATD applied on SU(2) isometries acting without isotropy
in the target space. One of the main strengths of this incarnation of the
procedure is that new solutions generated this way may still preserve some
supersymmetry, if not all. On the other hand, the NATD transformation
produces by construction non-compact spaces even if the isometry group is
compact: it exchanges the coordinates associated to this isometry group,
which realize a compact manifold1 in target space, for Lagrange multipliers
living in the Lie algebra of the group.

Given that a well-defined SCFT cannot be dual to a geometry with an in-
finite internal space, trying to assign such a theory to an AdS solution gener-
ated with NATD reduces to the question of whether a consistent, physically-
motivated regularization can be found for this new, uncompact geometry.
We partially answered this question with the particular proposals of [23, 24],
see sections 3.4 and 3.5, based on the seminal work of [25].

One of the most important open questions concerning the solution gener-
ating technique aspect of NATD in the context of holography is the effect of
the transformation on the field theory side. Only systematics known to date
is the transformation rule for the RR-fluxes presented in [6]. Already the
identification of the relevant d.o.f.s in the putative dual theory is far from
straightforward, due to e.g. the scaling behaviour of the central charge/free
energy depending on how the regularization of the geometry is performed.
An extension of the results so far on quiver completions will probably be
necessary before some general pattern might be derived.

In this direction, a straightforward generalization of our results concerning

1In this context, “compact manifold” is used to denote a manifold with a finite volume
integral.
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the compatibility of mass deformations and NATD might be achieved. We
will study the effect of the latter on the CP1-worth of fixed points that may
be reached from the N = 2 AdS5 × S5/Z2 solution applying different mass
deformations. This “moduli space” of fixed points include as particular cases
a version of the Pilch-Warner solution [78], gravity dual to the Leigh-Strassler
CFT [79], apart from the Klebanov-Witten background studied in this thesis.

Large gauge transformations played a central role in the holographic in-
terpretation of the new gravity backgrounds. They were responsible for the
rise in the number of colour and flavour branes at each stack of the brane
set-up, introducing also almost all NS5-branes separating these stacks.

Abelian T-duality arises for large values of the radial ρ direction generated
with NATD. In this large-ρ limit - equivalent to a large number n of LGTs -
for a background generated with NATD we recover the background generated
with ATD from the same seed solution, as explained in appendix B of [23],
included in section 3.4. In this limit, the NATD central charge/free energy
differs from its ATD counterpart by O(1/n) “corrections”. In the spirit of
[57], the linear quivers generated with NATD could be seen as some “open
up” limit of the circular quivers arising with ATD. This connection has been
made clearer for the NATD and ATD backgrounds obtained from the N = 4
near-horizon limit of the D2-D6 system. It was shown in [80] that both
geometries could be seen as arising in different limits of the same circular
quiver construction. It would be interesting to see if this result underlies a
more general phenomenon, extensible to AdS/CFT pairs in other dimensions.

We remarked in the previous section that the classification of N = (0, 4)
AdS3× S2 geometries achieved in [56] (section 3.3) still could not accommo-
date the uplift of the non-Abelian T-dual of the AdS3×S3×S3×S1 solution.
We require the internal spinors to realize an identity structure, which is be-
yond our SU(2)-structure Ansatz, in order to be able to reproduce both
electric and magnetic components for the G4 flux. A relevant question is
whether geometries described by this would-be classification could realize
some M2-M5 brane intersection unknown to date. Furthermore, the possible
M5-brane origin of new geometries with purely magnetic flux remains un-
clear. A better understanding thereof could allow for the exploitation of the
anomaly inflow [81] to calculate corrections to the entropy of the putative
black holes, which could then be compared to results from other methods.

Finally, explicit solutions to the IIA class of N = 4 Mink3 × S3 × S2

backgrounds were left to be found in [67] (section 3.6), including, through
U-dualities, type IIB and pure NS realizations. There are both massive and
massless IIA candidate solutions compatible with supersymmetry, which look
very promising both for finding Mink3 solutions with compact internal space,
but also possibly geometries that asymptote to AdS.
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A lo largo de los art́ıculos en los que se basa esta tesis, hemos investigado el
potencial de T-dualidad no abeliana (NATD) como técnica para generar solu-
ciones en supergravedad de tipo II, explorando la correspondencia AdS/CFT
para las nuevas soluciones. Éstas también fueron empleadas para sondar las
clasificaciones conocidas, proporcionando geometŕıas expĺıcitas, o poniendo
a prueba su generalidad, motivando aśı la extensión de las mismas.

Nos centramos en NATD aplicada a isometŕıas SU(2) actuando sin iso-
troṕıa en el espacio ambiente. Una de las principales ventajas de esta encar-
nación del procedimiento es que las nuevas soluciones aśı generadas pueden
preservar algo de supersimetŕıa, si no toda. Por otro lado, la transformación
NATD produce espacios no compactos por construcción, incluso si el grupo
de isometŕıa es compacto: intercambia las coordenadas asociadas al grupo
de isometŕıa, las cuales dan lugar a una variedad compacta2 en el espacio
ambiente, por los multiplicadores de Lagrange que son elementos del álgebra
del grupo.

Dado que una SCFT bien definida no puede ser dual a una geometŕıa
con un espacio interno infinito, la cuestión de intentar asignar una teoŕıa de
este tipo a una solución AdS generada con NATD se reduce a si es posible
encontrar una regularización consistente y f́ısicamente motivada para esta
nueva geometŕıa no compacta. Respondimos, al menos parcialmente, a esta
cuestión con las propuestas particulares hechas en [23, 24], véase las secciones
3.4 y 3.5, basándonos en el trabajo seminal de [25].

Una de los problemas abiertos de mayor relevancia concerniente a NATD,
como técnica para generar soluciones en el contexto de holograf́ıa, es el efecto
de la transformación en el lado de la teoŕıa de campos. A d́ıa de hoy, sólo
las reglas de transformación del sector RR, presentadas en [6], se conocen
de forma sistemática. Incluso la identificación de los grados de libertad rele-
vantes en la supuesta teoŕıa dual no es en absoluto evidente, debido p.ej. a
la dependencia del escaleo de la carga central o la enerǵıa libre en la forma

2En este contexto, por “variedad compacta” queremos decir que su integral de volumen
es finita.
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en que se regulariza la geometŕıa. Probablemente sea necesario extender los
resultados actuales en compleciones de quivers para poder llegar a derivar
algún patrón general.

En esta dirección, una generalización directa de nuestros resultados en lo
concerniente a la compatibilidad de deformaciones masivas y NATD se podŕıa
conseguir estudiando el efecto de esta última en el conjunto de puntos fijos,
de los que hay tantos como elementos en CP1, que se puede alcanzar apli-
cando diferentes deformaciones masivas a la solución N = 2 AdS5 × S5/Z2.
Este ”espacio de móduli” de puntos fijos incluye como casos particulares una
versión de la solución de Pilch-Warner [78], dual gravitatorio de la CFT de
Leigh-Strassler [79], aparte del espacio de Klebanov-Witten estudiado en esta
tesis.

Las transformaciones de large gauge (LGT) han jugado un papel funda-
mental en la interpretación holográfica de las nuevas soluciones gravitatorias,
ya que son responsables del aumento en el número de branas de color (y de
sabor, si las hubiera) en cada pila de la configuración de branas, aśı como
de la introducción de casi todas las branas NS5 que separaban las distintas
pilas.

T-dualidad abeliana (ATD) surge para valores altos de la dirección ra-
dial ρ generada con NATD. En este ĺımite de ρ alto - equivalente a un gran
número n de LGT - para una espacio generado con NATD, se recupera el
espacio generado con ATD a partir de la misma solución original, tal y como
se explica en el apéndice B de [23], incluido en la sección 3.4. En este ĺımite,
la carga central o enerǵıa libre derivadas de la aplicación de NATD difiere de
su opuesta abeliana por “correciones” de orden O(1/n). En la ĺınea de razo-
namiento de [57], se puede ver los quivers lineales generados con NATD como
un ĺımite en el que los quivers circulares dados por ATD se ”abren”. Esta
conexión se hizo más patente para las soluciones NATD y ATD obtenidas
del ĺımite near-horizon N = 4 del sistema D2-D6, mostrándose en [80] que
ambas geometŕıas se pod́ıan contemplar como distintos ĺımites de una misma
construcción de quiver circular. Seŕıa intersante comprobar si este resultado
se debe a un fenómeno mas general, extrapolable a pares AdS/CFT en otras
dimensiones.

En la sección anterior señalábamos que la clasificación de geometŕıas N =
(0, 4) AdS3×S2, conseguida en [56] (sección 3.3), aún no pod́ıa acomodar la
elevación a 11D del T-dual no abeliano de la solución AdS3 × S3 × S3 × S1.
Se require que los espinores internos den lugar a una estructura identidad,
la cual va más allá de nuestro Ansatz con una estructura SU(2), para poder
reproducir tanto una componente eléctrica como una magnética para el flujo
G4. Una pregunta de interés es si las geometŕıas descritas por una tal clasifi-
cación podŕıan provenir de alguna intersección de M2-M5 aún desconocida.
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De hecho, el posible origen en branas M5 de las nuevas geometŕıas con flujo
puramente magnético sigue sin estar claro. Una mejor comprensión del mis-
mo podŕıa permitir que se aprovechase la afluencia de anomaĺıas [81] para
calcular correciones a la entroṕıa de los presuntos agujeros negros, las cuales
se podŕıan comparar entonces a los resultados obtenidos con otros métodos.

Por último, en [67] (sección 3.6) no se pudieron encontrar soluciones
expĺıcitas de la clase IIA de espacios N = 4 Mink3 × S3 × S2, que inclu-
ye, mediante U-dualidades, versiones de tipo IIB y puramente NS de esas
mismas geometŕıas. Las posibles soluciones, masivas y no masivas de tipo
IIA, podŕıan ser compatibles con supersimetŕıa, y resultan muy prometedo-
ras de cara a encontar tanto geometŕıas Mink3 con espacio interno compacto,
como posiblemente soluciones que asintoten a AdS.
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[102] S. Zacaŕıas, Semiclassical strings and Non-Abelian T-duality, Phys. Lett.
B737 (2014) 90–97, [1401.7618].

[103] P. M. Pradhan, Oscillating Strings and Non-Abelian T-dual
Klebanov-Witten Background, Phys. Rev. D90 (2014) 046003, [1406.2152].

[104] A. Passias, A note on supersymmetric AdS6 solutions of massive type IIA
supergravity, JHEP 01 (2013) 113, [1209.3267].

[105] F. Apruzzi, M. Fazzi, A. Passias, D. Rosa and A. Tomasiello, AdS6

solutions of type II supergravity, JHEP 11 (2014) 099, [1406.0852].

[106] H. Kim, N. Kim and M. Suh, Supersymmetric AdS6 Solutions of Type IIB
Supergravity, Eur. Phys. J. C75 (2015) 484, [1506.05480].

[107] O. DeWolfe, A. Hanany, A. Iqbal and E. Katz, Five-branes, seven-branes
and five-dimensional E(n) field theories, JHEP 03 (1999) 006,
[hep-th/9902179].

[108] T. Dimofte, D. Gaiotto and S. Gukov, Gauge Theories Labelled by
Three-Manifolds, Commun. Math. Phys. 325 (2014) 367–419, [1108.4389].

[109] T. R. Araujo and H. Nastase, N = 1 SUSY backgrounds with an AdS factor
from non-Abelian T duality, Phys. Rev. D91 (2015) 126015, [1503.00553].

[110] I. Bah, C. Beem, N. Bobev and B. Wecht, AdS/CFT Dual Pairs from
M5-Branes on Riemann Surfaces, Phys. Rev. D85 (2012) 121901,
[1112.5487].

[111] I. Bah, C. Beem, N. Bobev and B. Wecht, Four-Dimensional SCFTs from
M5-Branes, JHEP 06 (2012) 005, [1203.0303].

[112] F. Benini, Y. Tachikawa and B. Wecht, Sicilian gauge theories and N=1
dualities, JHEP 01 (2010) 088, [0909.1327].

[113] J. Murugan and H. Nastase, A nonabelian particle–vortex duality, Phys.
Lett. B753 (2016) 401–405, [1506.04090].
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