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Highlights 

1. Kaolin protects grapevine plant against oxidative damage. 

2. Kaolin causes the global DNA demethylation. 

3. Promising nature of kaolin application as summer stress mitigation strategy. 

  



Abstract 

The exogenous kaolin application in grapevine has shown a great potential as summer 

stress mitigation strategy because it positively impacts fruit quality as a result of many 

molecular and biochemical changes. In the present study we wanted to address the 

hypothesis that the observed improved antioxidant capacity could also result from a 

more efficient enzymatic antioxidant system response. For that purpose, the enzymatic 

activity of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APx), 

glutathione reductase (GR) and glutathione peroxidase (GPx) were measured in kaolin 

treated plants, and correlated to some biomarkers of oxidative status, including 

hydrogen peroxide (H2O2), total thiobarbituric acid reactive substances (TBARS) and 

proline. Also, to assess if kaolin particle film could mediate epigenetic modifications, 

the levels of DNA methylation (5-methylcytosine) were assessed in leaf tissues through 

a stereological analysis. Results showed that the activity of the ascorbate-glutathione 

cycle key enzymes was boosted in kaolin treated plants, which translated into a less 

oxidative damage in leaf and berry tissues (lower H2O2 levels and lipid peroxidation). 

Results also showed that the methylation of DNA, which seems to be stimulated by the 

harsh environmental conditions, was decreased in leaves from kaolin treated plants.  



1. Introduction 

Drought, elevated air temperature, and high evaporative demand are increasingly 

frequent during summer in grape growing areas like the Mediterranean basin, limiting 

grapevine productivity and berry quality. The foliar exogenous application of kaolin, a 

radiation-reflecting inert mineral, has proven effective in mitigating the negative 

impacts of these abiotic stresses in grapevine and other fruit crops (Conde et al., 2016; 

Glenn et al., 2010; Shellie, 2015; Song et al., 2012 ). Under the current climate 

changing scenario, the mean temperature is projected to increase up to 4°C by the end 

of this century (IPCC, 2007), being important to evaluate potentially different impacts 

of this abiotic factor, and others, on grapevine productivity in Douro Region (Ferreira et 

al., 2012; Moutinho-Pereira et al., 2004). 

Considering the above concerns, previous studies indicated that heat, water deficit 

and high photosynthetic photon flux density (PPFD) and UV-B levels are well known to 

disturb cellular redox homeostasis (Krasensky and Jonak, 2012; Mittler, 2006). In fact, 

under adverse environmental conditions, unrestrained accumulation of reactive oxygen 

species (ROS), such as singlet oxygen (
1
O2), superoxide anion (O2

•−
), hydrogen 

peroxide (H2O2) and hydroxyl radical (OH
•
) were recruited in different cellular 

components (Ahmad et al., 2010; Mittler, 2002) and may lead to oxidative stress when 

excess of ROS are produced. In a recent work, grapevines treated with kaolin have been 

correlated with a reduction of ROS in berries and leaves, reinforcing the mitigation of 

adverse abiotic climatic stresses (Dinis et al., 2016b). The imbalance of ROS alters 

membrane fluidity and permeability, leading to the denaturation and inactivation of 

some enzymes, degradation of proteins, bleaching of pigments and disruption of DNA 

strands, which culminates in programmed cell death (Apel and Hirt, 2004; Vacca et al., 

2004). In order to counteract ROS and alleviate oxidative damage, plants have several 



enzymatic and non-enzymatic systems, the later including lipophilic membrane 

associated antioxidants and hydrophilic reductants (Ozden et al., 2009). Antioxidants 

are an integrative participant in the ROS scavenging pathways, such as the water-water 

cycle in the chloroplast and the ascorbate-glutathione cycle in the chloroplast, 

mitochondria, peroxisomes, apoplast and the cytosol (Slooten et al., 1995). Among the 

non-enzymatic antioxidants, proline works like an electron sink mechanism and it has 

also been suggested that it functions as a cellular osmotic regulator between the cytosol 

and vacuole. Moreover, proline can detoxify ROS and promote membrane protection 

and stabilization of antioxidant enzymes (Ozden et al., 2009; Sharma and Dietz, 2006). 

Beyond the improvement of antioxidant activity in leaves and berries in this species 

(Dinis et al., 2016), environmental stresses induce also genetic (Conde et al., 2016) and 

epigenetic changes that trigger DNA methylation (Correia et al., 2016; Meijon et al., 

2009; Schellenbaum et al., 2008; This et al., 2007). DNA methylation is a well 

characterized indicator of epigenetic responses to biotic and abiotic factors (Feil and 

Fraga, 2012; Madlung and Comai, 2004; Mirbahai and Chipman, 2014). Altered DNA 

methylation is associated with changes in gene expression and signal transduction, 

being a well characterized indicator of epigenetic responses (Bräutigam et al., 2013; 

Kinoshita and Seki, 2014; Valledor et al., 2007). However, there is relatively few 

information concerning alterations in DNA methylation following exposure of plants to 

environmental stress with a chemically inert mineral with excellent reflective properties, 

such as kaolin.  

In this conceptual framework, although it has been reported that environmental 

factors influence grapevine productivity, how epigenetic mechanisms such as DNA 

methylation and antioxidant enzymatic mechanisms may interfere with vine tissues is 

poorly studied. Thus, the purpose of the present study was to fulfill the identified gap of 



knowledge by research how environmental stresses may disrupt biochemical and 

epigenetic levels in leaves and/or berries after a kaolin treatment. For this purpose, 

enzymatic activities alterations (superoxide dismutase (SOD), catalase (CAT), ascorbate 

peroxidase (APx), glutathione reductase (GR) and glutathione peroxidase (GPx) were 

quantified. The oxidative damage through the quantification of hydrogen peroxide 

(H2O2) and total thiobarbituric acid reactive substances (TBARS) was also evaluated, 

likewise, a signaling molecule (proline) synthetized as a response to abiotic stress. On 

the other hand, in attempting to explore the effects of kaolin on DNA methylation 

dynamics in grapevine leaves, global 5-methylcytosine (5-mdC) was also assessed by 

immunohistochemistry and quantified through a stereological analysis. 

 

Keywords: Antioxidative enzymes, hydrogen peroxide, lipid peroxidation, epigenetic 

marks 

 

2. Material and methods  

2.1. Experimental design 

Samples were obtained from Vitis vinifera L. (Touriga Nacional cv.), grafted on 110 R 

rootstock, located in a commercial vineyard “Quinta do Vallado” in the Douro valley 

located at Peso da Régua (41º09'44.5''N 07º45'58.2''W), in northern Portugal. The 

climate is typically Mediterranean-like, with a warm-temperate climate and dry and hot 

summers (Kottek et al., 2006), with higher precipitation during the winter months and 

very low during the summer. According to the World reference base for soil resources 

2014 (FAO, 2015) the soil mapping of the region is classified as dystric technosols 

taking in account their acidity and deep modification by human actions. Vines were 

managed without irrigation and grown using standard cultural practices as applied by 



commercial farmers. Two exposure conditions were set up: an experimental control and 

another pulverised (17
th

 July 2014) with 5 % (w/v) kaolin (Surround WP; Engelhard 

Corp., Iselin, NJ), both in three vineyard rows (n = 20 per row and treatment). To ensure 

the same edaphoclimatic conditions, all rows are located side-by-side on a steep hill 

with an N-S orientation. The 7-year old vines, were trained to unilateral cordon and the 

spurs were pruned to two nodes each with 10-12 nodes per vine. A schematic 

representation of the experiment procedure is presented in Fig. 1. 

For the biochemical procedure, mature leaves that were well exposed to solar 

radiation (n = 6/ per row and treatment) were sampled in three different dates after 

pulverization: one week (23
th

 July), one month (21
st
 August) and one month and half 

(3
rd

 September). Berry samples were randomly collected from different positions in the 

clusters and in the vine (n = 200 per row and treatment) in two different dates: 28
th

 

August and 12
th

 September (close to harvest) (Fig. 1). Samples (leaves and fruits) were 

frozen in liquid nitrogen and stored at −80 °C, posteriorly lyophilized for 48 h and 

converted to a fine dried powder in two sub-samples per row (n = 6/per treatment) 

before analysis.  

For the immunohistochemistry procedure, leaves were collected at 21
st
 August (n = 

3/per row and treatment) and fixed according to Meijón (Meijon et al., 2009) with some 

modifications. The tissues were fixed in Phosphate Buffered Saline (PBS) with 4% 

(w/v) paraformaldehyde containing mercaptoethanol and later stored in PBS containing 

0.1% (w/v) paraformaldehyde at 4 ºC until further use. 

 

2.2. Quantification of TBARS and H2O2 concentrations 

The oxidative damage to lipids in grapevine leaf and fruit extracts was quantified as 

previously described (Dinis et al., 2014). Briefly, the lyophilized samples were frozen in 



liquid nitrogen and ground in 20% (w/v) trichloroacetic acid with mortar and pestle. 

The absorbance of the supernatant was measured at 532 nm, with subtraction of the 

value measured as non-specific absorption at 600 nm. TBARS concentration was 

expressed in terms of mg g
-1

 dry weight (DW), using an extinction coefficient of 155 M 

cm
-1

 (Costa et al., 2002). 

Hydrogen peroxide (H2O2) concentration was measured following the method of 

Ozden et al. (2009). Leaf and fruit lyophilized extracts were ground in 1% (w/v) 

trichloroacetic acid (Rosati et al., 2006). The supernatant was added to 0.5 ml of 10 mM 

K-phosphate buffer (pH 7.0) and 1.0 ml of 1 M KI. The absorbance of the reaction 

mixture was measured at 350 nm and the H2O2 concentration was calculated from a 

standard calibration curve (up to 1000 µmol ml
-1

) and expressed as µmol g
-1

 DW. 

 

2.3. Proline concentration 

Proline quantification was determined according to Bates et al. (1973). The 

lyophilized extracts of leaf and fruit samples were homogenized in 3% (w/v) 

sulphosalicylic acid (SSA) and the mixture was centrifuged for 10 min at 10,000 × g 

after filtration through a Whatman filter paper. Thereafter, 1 ml of each supernatant was 

mixed with 1 ml of glacial acetic acid and 1 ml of freshly prepared acid–ninhydrin 

solution. The mixtures were incubated for 1 hour in a water bath at 100 ºC and then 

cooled in an ice bath to 0 ºC. Afterwards, 4 ml of toluene were added to each previous 

mixture and vortexed for 15 s. The toluene phase was then carefully collected and 

absorbance was measured at 520 nm in a spectrophotometer using toluene as a blank. 

The proline concentration was calculated using a standard curve. 

 

2.4. Extraction of antioxidant enzymes and determination of enzymatic activities 



Antioxidant enzymes were extracted according to Papadakis et al. (2001). The 

lyophilized samples were homogenized with an Ultra Turrax RZR1 (Heidolph) at 

20,000 rpm/4 ºC. The extraction buffer contained 0.2 M of Tris˗HCl (pH 8.0), 5 mM 

dithiothreitol (DTT), 0.5 mM phenylmethylsulfonyl fluoride (PMSF), 10% (w/v) 

glycerol, 0.25% (w/v) Triton X˗100, and 2% (w/v) insoluble polyvinylpolypyrrolidone 

(PVPP). Each extract was centrifuged for 30 min at 40,000 × g, and the supernatants 

aliquoted and frozen at -80 °C. Protein determination was performed according to 

Bradford (1976). Prior to the ascorbate peroxidase (APx) enzymatic assay, 1 mM of 

ascorbate was added to the protein extract. All enzymatic assays were performed at 

saturating substrate concentrations to ensure the determination of the maximal 

velocities. 

SOD (EC 1.15.1.1) activity determination was performed by the WST (2–(4–

iodophenyl– 3–(4–nitrophenyl)–5–(2,4–disulphophenyl)–2H–tetrazolium, monosodium 

salt) reduction method, with the SOD assay kit WST (19160–1KT–F, SIGMA). The 

ability of the enzyme to inhibit the photochemical reduction of nitro blue tetrazolium 

(NBT) was followed spectrophotometrically at 440 nm. 

CAT (CAT; EC 1.11.1.6) activity was determined by following the consumption of 

H2O2 at 240 nm (Chance and Maehly, 1955) (extinction coefficient 0.0436 mM
−1

 cm
−1

) 

for 2 min. Ascorbate peroxidase (EC 1.11.1.11) activity was assayed by monitoring the 

decrease in absorbance at 290 nm for 2 min (extinction coefficient 2.8 mM
−1

 cm
−1

) (Rao 

et al., 1995). 

GR (GR; EC 1.8.1.7) activity was measured according the method described by 

Foyer and Halliwell (Foyer and Halliwell, 1976). The reaction mixture (final volume 2 

mL) contained 0.1 ml of protein extract, 1 mM EDTA, 1 mM glutathione, 0.05 mM 



NADPH and 100 mM buffer adjusted to pH 7.5 with HC1. The decrease in absorbance 

at 340 nm due to the oxidation of NADPH to NADP+ was observed and determined. 

GPx (GPx; EC 1.11.1.9) activity assay was performed according to Flohe and 

Gunzler with some modifications (Flohe and Gunzler, 1984). For that, the consecutive 

glutathione reductase reaction was measured and monitored by the oxidation of 

NADPH at 340 nm for 2 min. The reaction mixture contained phosphate buffer (pH 7), 

10 mM GSH, GSH reductase (0.24 U), 12 mM TBHP, 10 mM NADPH and sample in a 

final volume of 2 ml. 

 

2.5. Immunohistochemistry 

After fixation (referred in 2.1), samples were introduced in a cryostat medium (Tissue-

Tek, Killik; Sakura Finetek USA, Inc., Torrance, CA, USA) and were frozen at -23 ºC 

to posteriorly monitor global 5-methylcytosine (5-mdC) distribution. Leaf sections of 50 

μm were cut with a sliding cryotome CM1510S (2002 Leica Microsystems, Wetzlar, 

Germany), collected on slides and conserved at -20 ºC until the analysis (Correia et al., 

2013). Sections were immersed in ascending and descending 25, 50, 75 and 100% 

ethanol series (5 minutes each one) and finally for 5 minutes in PBS buffer. Before 

incubating overnight with the primary antibody (anti-5-mdC mouse antibody; 

Eurogentec, Cat. no. BI-MECY-0100) diluted 1/50 in 1% bovine serum albumin (BSA, 

Sigma), slides were pre-treated with 10% BSA for 10 min to reduce non-specific 

binding. For negative controls the primary antibody was omitted and replaced by 1% of 

BSA. After washing (2 times, 10 minutes each) in PBS buffer with tween (Phosphate 

Buffered Saline + 0.1 % (v/v) Tween-20-phosphate-buffered saline, pH 7.2), sections 

were incubated for 1 h in darkness with Alexa Fluor 488-labelled anti-mouse polyclonal 

antibody (Molecular Probes, Cat. no. A-11001) diluted 1/25 as the secondary antibody 



anti-mouse. Afterwards, slides were rinsed in PBS buffer with tween (2 times, 5 

minutes each). Finally, the slides were counterstained with DAPI (4’,6- diamidino-2-

phenylindole; Fluka) during 20 minutes. Sections were washed in MilliQ water (2 

times, 5 minutes each), and coverslipped using the mounting media Mowiol (Sigma–

Aldrich Co., St. Louis, MO, USA). Fluorescence was visualized using a confocal 

microscope (Leica TCS-SP2-AOBS) connected to a workstation and the images were 

processed with Fiji Software. 

 

2.6. Global DNA methylation quantification by stereological analysis 

The volume density (VV) is defined as the percentage of the total volume, of a well 

defined reference space, occupied by any given component within it. To determine the 

VV (%) of the cells presenting methylation (5-mdC) stained within the leaf (the present 

reference space), a classical stereological technique was performed based on point 

counting (Freere and Weibel, 1968; Parkhurst, 1982) using the following formula: 

VV (structure, reference) = [P(structure) × 100] ÷ [k × P(FAO)] 

where P(structure) is the number of test points within each structural component, 

P(FAO) is the total number of test points lying over the reference space (leaf), and k is 

the ratio between the number of points on the grid used for the structure of interest and 

for the reference space. 

Counting was done using the images captured with the confocal microscope. The 

stereological test grids used had two sets of points, which were previously established 

depending on the frequency and size of the targeted compartment, and were super-

imposed on the live image of the monitor. A 1:4 grid was used, with a total of 48 coarse 

points targeting the reference space, and 192 points targeting all immunohistochemistry 

staining of global methylation antibody.  



Point counting was made in the systematically sampled fields working with the 40× 

Olympus UIS-2 objective lens (Olympus Co., Ltd., Tokyo, Japan). The first field of 

vision was randomly selected and the following fields were systematically sampled by 

stepwise movements of the stage in the x- and y-directions (220 µm × 170 µm), 

covering the complete section area of the leaf in order to count all 

immunohistochemically stained cells. 

 

2.7. Statistics  

Statistical analyses were performed with Sigma-Plot 12.0 program (SPSS Inc.). After 

testing for ANOVA assumptions (homogeneity of variances with the Levene's mean 

test, and normality with the Kolmogorov-Smirnov test), statistical differences among 

months and treatments were evaluated by two-way factorial ANOVA, followed by the 

post hoc Tukey’s test. Significant differences were considered for p<0.05. 

Measurements were carried out in samples collected in three different dates after 

pulverization: at 23
th

 July (one week), 21
st
 August (one month) and 3

rd
 September (one 

month and half) for leaves and 28
th

 (veraison) and 12
th

 September (maturation) for 

fruits. Values are presented in Figure 2 and 3 as mean ± standard deviation (SD), 

n=6/per row for leaves and n=200/per row for fruits. Statistical analysis was performed 

using a two-way factorial ANOVA. Different lower case letters represent significant 

differences between the season (July, August and September) within the same treatment 

(p < 0.05) and *** p < 0.001, ** p < 0.01, * p < 0.05 represent significant differences 

between treatments (control versus kaolin) within the same month. Absence of 

superscript indicates no significant difference between treatments.  

 

3. Results and discussion 



3.1. Kaolin application protects leaves and fruits against oxidative damage 

The effects of kaolin application on TBARS and H2O2 concentrations in grapevine 

leaf and fruit extracts are shown in Table 1. The leaves shown lower lipid peroxidation 

levels than grape berries, and this difference was more pronounced in the control. In 

August and September TBARS levels in leaf tissues from kaolin treated plants were 

lower than in control leaves, and the difference was even higher between berries from 

control and kaolin treated plants. The addition of kaolin appeared to activate the 

antioxidant systems to reduce the peroxidation extent compared to the control.  It is 

known that lipid peroxidation can originate cellular damage by reacting with other 

lipids, proteins and nucleic acids (Almeras et al., 2003) and that kaolin application may 

prevent membrane injury in some plants (Beis and Patakas, 2012; Mobin and Khan, 

2007). In all treatments, the H2O2 concentration in the leaves was higher than that in the 

fruits during all the experimental period. In august, the addition of kaolin only 

significantly reduced the berry H2O2 concentration; however, in September, it can 

remarkably reduce the leaf and berry H2O2 concentration. Depending on the intensity 

and duration of the stress, H2O2 display two distinct roles in plants, acting as a signal 

molecule involved in the acclimation process at low concentrations or, at high 

concentrations, it can lead to programmed cell death due to its involvement on the 

Fenton-Haber-Weiss reactions (Gill and Tuteja, 2010). The reaction’s product is the 

highly reactive hydroxyl radical, which in turn reacts with all biological molecules. 

Proline concentration was much higher in fruits than in leaves and kaolin 

significantly reduced the proline concentration being more evident in September (38% 

reduction) (Figure 2). Stressful conditions results in an overproduction of proline, that 

also performs as a radical scavenger against oxidative damage and as a signaling 

molecule, maintaining a sustainable environment for plants growth under certain 



boundaries (Hayat et al., 2012; Kisgor K. et al., 2014; Rizhsky et al., 2004). In 

grapevines treated with kaolin, especially in berries, the reduced levels of TBARS and 

H2O2 correlated with lower amount proline was in agreement with previous reports  

(Carvalho et al., 2015; Lin and Kao, 1998; Upadhyaya et al., 2007). In fact, these 

studies showed that the increase of proline concentration with higher H2O2 

concentrations and lipid peroxidation, suggesting a crosstalk between proline and H2O2 

(Carvalho et al., 2015; Lin and Kao, 1998; Upadhyaya et al., 2007). It has been reported 

that plants exposed to various abiotic stresses show an increase in TBARS 

concentration due to ROS production (Dinis et al., 2016), indicating that kaolin 

application may prevent membrane injury (Beis and Patakas, 2012; Mobin and Khan, 

2007). 

 

3.2. Kaolin exogenous application boosts enzymatic defences 

The assessment of CAT, SOD, APx, GR and GPx activities in leaf and berry 

extracts are shown in Fig. 3 (A, B, C, D and E, respectively). Kaolin treated plants 

exhibited higher CAT and SOD activity (Fig. 3A and 3B) than control ones throughout 

the experimental period. At the final ripening stage (September), kaolin treated leaves 

had an increased activity of 42% and 22%, for CAT and SOD respectively. From July to 

September, CAT activity (Fig. 3A) increased 56% in control samples and 71% for 

kaolin ones, demonstrating the stimulating effects of kaolin exogenous application on 

the enzymatic antioxidant defences. SOD activity (Fig. 3B) in leaves presented a similar 

tendency, being the enzyme which activity was more accentuated in leaves from kaolin 

treated plants, increasing 57% from the beginning of the study (July) up to the end of 

the experimental period. The fruits, from both treatment, presents a slight decrease in 

CAT activity from August until the harvest date, still, kaolin plants presenting 62% 



more activity than control ones. On the contrary, SOD activity in berries revealed an 

opposite trend, exhibiting an increasing pattern from the first until the last sampling 

date. However, when compared to control grapevines, kaolin treated plants showed 24% 

more activity at harvest. The balance between ROS formation and consumption is 

tightly controlled by non-enzymatic and enzymatic antioxidants, as well as by 

developmental stages since the fruit ripening process also generates a certain amount of 

oxidative stress (Masia et al., 1998).  Previous studies done in other species reported 

that the natural reaction of ROS production in stress conditions, triggers the antioxidant 

machinery in which SOD and CAT are more effective than other antioxidant enzymes 

in influencing the patterns of fruit ripening (Singh et al., 2012). Despite the fact that of 

grapevines were continuously exposed to summer stress, kaolin application showed 

protective effects, allowing greater conditions for plants to counteract the oxidative 

damage and enhanced the enzyme-mediated antioxidative systems in plants. 

 Generally, APx activity was higher on kaolin treated grapevines (Fig. 3C). 

Significant differences were found in leaves after kaolin application, exhibiting an 

increase of 92% in APx activity compared to control in the first month of the 

experiment. Overall the assay, kaolin berries also feature higher APx activity than 

control, being significant at the harvest date. In August, fruits obtained from kaolin 

treated plants had 55% more activity comparatively to control ones. The results showed 

a decrease in APx activity for kaolin treated fruits from August until the harvest date 

(27%), while the ones from control did not registered major alterations in enzymatic 

activity. The APx is a crucial enzyme of the antioxidant machinery, displaying higher 

affinity for H2O2 detoxification than CAT, though was found to be more sensitive in its 

response to oxidative stress (Blokhina et al., 2003; Payton et al., 2001). Some studies 

regarding plant defence systems against abiotic stresses suggest that APx activation 



resulted from an increase in H2O2 concentration (Ozden et al., 2009). Thus, there is an 

opposite correlation between APx activity and H2O2 concentration, which seems similar 

to the effects observed in the grapevines treated with kaolin particle film. Beyond the 

possible crosstalk between APx activity and H2O2 levels, Balla et al. (2009) 

demonstrated that the enhanced activity of APx results in greater tolerance to heat 

stress, showing the efficiency and importance of the glutathione – ascorbate cycle (Balla 

et al., 2009; Lee et al., 2007; Pang and Wang, 2010). Since the improvement of stress 

tolerance is often related to enhancement of antioxidant enzymes activity in plants, our 

study points that kaolin boosts grapevine performance and growth, as well as protection 

against oxidative damage (Ma et al., 2008). Data collected could also indicate that 

kaolin treated grapevines are better prepared to develop tolerance mechanisms against 

summer stress. 

In the ascorbate – glutathione cycle, GPx uses H2O2 to form the oxidized 

glutathione (GSSH), which is then cycled back to the reduced form (GSH) by GR 

(Suzuki et al., 2012). GR and GPx activities for both leaf and berry extracts are shown 

in Fig. 3D and 3E, respectively. In leaf tissues, the results indicate the higher activity of 

GR than GPx, suggesting the positive performance of the ascorbate – glutathione cycle, 

since glutathione also participate as an electron donor for dehydroascorbate reductase 

(DHAR) activity, which contributes in the regeneration of ascorbate pool (Foyer and 

Noctor, 2011). Despite of having lower H2O2 concentrations, kaolin leaf extracts 

exhibited higher GR and GPx activities, mainly in September, with an increase in 32% 

of GR activity compared to control. GR also plays a fundamental role in the 

antioxidative system by regenerating the glutathione pool in the ascorbate - glutathione 

cycle, indicating that the accumulation of GSH causes an increase in GR activity, which 

trigger stress tolerance in plants (Asada, 2006; Foyer and Noctor, 2005). As in our 



study, it has also been reported that during heat stress, GR activity increased in some 

plant species (Contour-Ansel et al., 2006; Hernandez et al., 2001). From August to 

September, the results showed a decrease in 46% of GPx activity in kaolin treated leaf 

extracts. However, as described above, data relating to APx activity suggest an efficient 

response to summer stress. Treated plants with kaolin exhibited higher levels of GR and 

GPx activities when compared to control ones, suggesting that control plants are not 

able to respond in the same terms to stress factors as kaolin treated grapevines. After 

kaolin pulverization (July), the differences observed between control and kaolin for GPx 

and GR activities of leaf extracts were slightly significant, specifically for GR. 

Nevertheless, fruit extracts demonstrated an opposite trend, i.e. higher GPx activity 

instead of GR. In berry extracts, though GR activity did not reached significant values 

during overall the experimental period, significant differences can be observed in GPx 

activity, mainly at the harvest date, with 82% less activity in extracts from kaolin 

treated berry comparatively to control. The increased H2O2 levels, the reduced APx 

activity in control fruit extracts, as well as the ascorbate levels (data shown in Dinis et 

al. 2016a), point to an imbalanced role of GR activity in the control grapevines of our 

study. Despite the higher GR activity in control fruit extracts, our study suggests that 

one cannot endure the necessary ascorbate pool to greatly sustain the ascorbate – 

glutathione cycle performance. Previous studies reported that heat stress stimulate the 

enzymatic antioxidant machinery (CAT, SOD, APx and GR), showing a coupled 

relation between reduced oxidative damage and elevated levels of enzymatic and non 

enzymatic antioxidants. So, it reveals that the up regulation of the antioxidant defence 

systems could influence stress tolerance in plants (Hasanuzzaman et al., 2013). The 

levels of H2O2, APx and ascorbate indicate that kaolin extracts are more available to 

greatly respond in stress conditions, supporting the role of the antioxidant defence 



system in conferring summer stress tolerance (Dinis et al., 2016). The fact that lower 

levels of H2O2 were observed, in parallel with the increase of antioxidant enzyme 

activities strongly suggests that this increase is not due to greater stressful conditions 

and cellular impairment, but instead that it indeed was stimulated somehow by kaolin 

and played a probable role in the increased tolerance of kaolin treated plants to the 

deleterious effects of summer stress. A model for the biochemical pathways involved is 

proposed in Figure 4 based in our results, supported by the recent knowledge (white 

arrows). Under summer stress kaolin exogenous application boosts the antioxidant 

defense systems in fruit and leaf extracts (green arrow) compared to grapevines without 

this particle film (blue arrow). Leaf and fruit extracts converge on the activation of the 

same antioxidant defense, except for GPx and GR pathways which are inversely 

proportional in berry ones (Fig. 4). 

 

3.3. Changes of the global level of DNA methylation under Kaolin application  

Positive labelling of DNA methylation estimated by global 5-methylcytosine (5-

mdC) in grapevine leaves were detected one month after kaolin pulverization (Fig. 5). 

5-mdC signal is mainly detected in palisade cells of mesophyll both in control and 

kaolin treatment. The presence of these immunopositive cells, identified by their green 

fluorescing staining, clearly indicate occurrence of DNA methylation and the relative 

volumes of these cells were also quantified. Overall, the global relative volumes of 

DNA methylation were distinct among control and kaolin, being significantly decreased 

from 30.8% to 11.7% in leaves (p = 0.024) after exposure to kaolin treatment (Fig. 5 A, 

C and D, F to kaolin and control leaves, respectively). These results indicate that kaolin 

seems to induce the demethylathion of DNA when compared to the methylation status 

of the control group. 



DNA methylation is a well characterized indicator of epigenetic responses of 

biotic and abiotic factors (Feil and Fraga, 2012; Madlung and Comai, 2004; Mirbahai 

and Chipman, 2014). Abiotic stresses, such as unfavorable temperature, are known to 

induce negative effects on growth and development of plants modulating a host of 

genetically programmed responses (Conde et al., 2016; Madlung and Comai, 2004). The 

role of epigenetic mechanisms, such as DNA methylation in many genes and histone 

acetylation were clearly crucial in acclimation and survival of plants to high 

temperatures, such as Quercus suber L. (cork oak) (Correia et al., 2013). For instance, it 

was reported that higher temperature resulted in several occasions and models results 

hypermethylation, whereas lower temperature resulted in the demethylation of DNA 

extracted from Antirrhinum majus (snapdragon) (Hashida et al., 2003). DNA 

methylation and demethylation in response to abiotic stresses is however variable, 

depending on the genes it affects, on the abiotic stress ocurred (as well as its intensity), 

and on the cells, organs and plants subjected to the stress. Our results also suggested 

that high temperature and solar radiation with low water availability are associated to 

the hypermethylation of DNA as we can see in control grapevines leaves (Fig. 5F), 

which are subjected to these extreme conditions (Dinis et al., 2016b). Oppositely, as 

kaolin improves leaf reflectance in the infrared and ultraviolet region, this reduces heat 

and light stress in plants (Dinis et al., 2016b) and seems to induce the global 

demethylation of DNA. This demethylation indicates a potential reduction of stress 

effects in the exposed group. Additional studies to investigate a possible correlation 

between enzymatic and molecular results are necessary to determine if demethylation is 

somehow associated/deactivation of biochemical pathways in grapevines involved in 

the synthesis of important compounds of an organoleptic standpoint, as 

phenylpropanoid and flavonoid pathways previously reported by Conde et al 2016, or 



even involved in stress-responsive mechanisms. Importantly, environmental conditions 

induce epigenetic changes that can be imprinted in genes, so DNA methylation could 

generate novel and heritable phenotypic variations in grapevine, such as heat tolerance, 

which can be useful under the current climate changing scenario.   

 

4. Conclusions 

Kaolin exogenous application boosts the antioxidant defense systems in grapevines 

exposed to summer stress, by increasing enzymatic activities in fruits, which leads to a 

decrease in ROS production and oxidative damage. Interestingly, the present study 

suggested also that kaolin might cause the global DNA demethylation and consequently 

the regulation of transcriptional changes on genes associated to the DNA 

methylation/demethylation. Overall, the results reinforce the promising nature of kaolin 

application as summer stress mitigation strategy and opens new research questions in 

the molecular field that deserves to be explored.   
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Figure 1. Experimental design overview and timeline. Grapevines (Vitis vinifera) were 

exposed to a pre-veraison kaolin (5%) application up to maturation harvest. 

 

Figure 2. Proline concentration in leaf and fruit extracts in response to kaolin 

exogenous application in grapevine.  

 

Figure 3. Enzymatic activities in leaf and fruit extracts in response to kaolin exogenous 

application in grapevine: A – Catalase (CAT); B – superoxide dismutase (SOD); C – 

ascorbate peroxidase (APx); D – glutathione reductase (Gr) and E – glutathione 

peroxidase (GPx).  

 

Figure 4. Schematic representation of grapevine (Vitis vinifera) leaf and berry 

antioxidant machinery based in biochemical results (control - blue arrow; kaolin - green 

arrow), supported by the current knowledge (white arrows). APx – ascorbate 

peroxidase; AsA – ascorbic acid; CAT – catalase; DHA – dehydroascorbic acid; DHAR 

– dehydroascorbate reductase; GPx – glutathione peroxidase; GR – glutathione 

reductase; GSH – glutathione; GSSG – glutathione disulfide; H2O2 – hydrogen 

peroxide; MDHAR – monodehydroascorbate reductase; MDHA – 

monodehydroascorbate; O2
•-
 – superoxide radical; OH

•
– hidroxil radical;

 
and SOD – 

superoxide dismutase.  

 

Figure 5. Immunodetection of DNA methylation in section of Vitis vinifera leaves from 

control and kaolin treatments using confocal microscope (x20). Differential interference 

contrast (A and D), DAPI with blue signal (B and E), and DNA methylation with green 

signal (C and F). A, B and C are from leaves untreated (control); C, D and E are from 



kaolin treated leaves. Abbreviations: ME = mesophyl cells and VV = vascular vessel. 

Three biological replicates of each treatment and a negative control were performed. 

 

  



Table 1 – Thiobarbituric acid reaction substances (TBARS) and hydrogen peroxide 

(H2O2) concentration of grapevines leaves and fruits in response to kaolin exogenous 

application. Measurements were carried out in samples collected at 23
th

 July (one week 

after pulverization), 21
st
 August (one month after pulverization) and 3

rd
 September (one 

month and half after pulverization). Each point is the mean of six replicates with 

standard deviation. Values were normalized by dry weight (DW). 

Statistical analysis was performed using a two-way factorial ANOVA. Different lower case letters 

represent significant differences during the season (different months), in the same treatment (column), 

and the * represent the significance of different treatments (control/kaolin) within the same month.  

 
  Month Control Kaolin 

TBARS 

(µg g-1) 

Leaf July  1.86±0.294b 3.08±0.275a*** 

  August  2.36±0.092a 1.98±0.067b** 

  September 2.31±0.155a 1.36±0.312c*** 

     

 p value Treatment 0.018  

  Month 0.003  

  Treatment x Month 0.004  

     

 Fruit August  9.37±1.172 4.76±0.776** 

  September 8.66±0.620 1.05±0.522*** 

     

 p value Treatment <0.001  

  Month 0.066  

  Treatment x Month 0.861  

H2O2 

(µmol g-1) 

Leaf July  5.63±0.177a 5.72±0.807a 

  August  4.88±0.112b 5.66±0.400a** 

  September 5.20±0.632ab 3.66±1.20b** 

     

 p value Treatment 0.355  

  Month 0.001  

  Treatment x Month 0.001  

     

 Fruit August  2.40±0.486 1.66±0.294** 

  September 1.79±0.310 0.838±0.229*** 

     

 p value Treatment <0.001  

  Month <0.001  

  Treatment x Month 0.489  

 
  



 

  



 

  



 

  





 


