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Abstract 
 
The job shop scheduling is a challenging problem that has interested to researchers in the fields of Artificial 
Intelligence and Metaheuristics over the last decades. In this project, we face the job shop scheduling 
problem with an additional resource type (operators). This is a variant of the problem, which has been 
proposed recently in the literature. We start from a genetic algorithm that has been proposed previously to 
solve this problem and improve it in two different ways. Firstly, we introduce a modification in the schedule 
generation scheme in order to control the time of inactivity of the machines. Secondly we define a number 
of neighbourhood structures that are then incorporated in a memetic algorithm. In order to evaluate the 
proposed strategies, we have conducted an experimental study across a benchmark derived from a set of 
hard instances of the classic job shop problem. 

 

 

Key words 
 
metaheuristics, genetic algorithms, memetic algorithms, local search, job shop scheduling problem with 
operators, makespan, total flow time.  
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1. Introduction 

There are many combinatorial optimization problems for which exact methods are not efficient 
in their resolution. That is why in recent years have proliferated evolutionary and metaheuristic 
techniques, which calculate approximate solutions with remarkable success [Talbi 2009]. 
Examples of these techniques are genetic algorithms, local search algorithms and memetic 
algorithms, which combine the two. 

In this master project we have developed two algorithms for one of those problems: the Job 
Shop Scheduling Problem with Operators, in which it is required to order the execution of a set of 
tasks that share resources and that are assisted by human operators so that an objective function is 
optimized. This problem is a generalization of the Job Shop Scheduling problem, which is of 
great importance in Artificial Intelligence. 

The two algorithms are extensions of a genetic algorithm presented in the final project [Mencía 
2010] and the conference paper [Mencía et al. 2011]. The first proposal changes the fitness 
function used by the genetic algorithm. The second one consists in combining it with a local 
search algorithm; in particular, we try to extend the neighborhood structure, termed N1 in 
[Matfeld1995], for the classic job shop scheduling problem. 

The remainder of this document is organized as follows. In section 2 we clarify the objectives of 
this work. In section 3, the Job shop Scheduling problem with Operators is formulated. Section 4 
describes the main components of the genetic algorithm used to solve this problem. Section 5 
introduces the modifications introduced in the schedule generation scheme in order to control the 
time of inactivity of the machines, which give rise to the so called Hybrid OG&T algorithm. 
Section 6 is devoted to present the neighborhood structures. In section 7, we introduce the 
memetic algorithms created by combining the genetic algorithm with a local search that uses 
these neighborhood structures. The design and results of the experimental study are given in 
section 8. In section 9 we summarize the main conclusions and propose some ideas for future 
research. Finally, we include a appendix containing detailed results.  
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2. Objectives 

 
The main goal of this master thesis is to improve the genetic algorithm proposed in [Mencía et 

al. 2011]. In particular we propose the following specific objectives: 

Modify the schedule generation schema, termed OG&T, adapted to decode chromosomes in the 
genetic algorithm, so as the maximum time of inactivity of the machines can be limited. These 
modifications give rise to the so called Hybrid OG&T algorithm. In this way we can reduce the 
search to a subset of solutions that are expected to be better in average than the solutions of the 
whole search space. 

Define neighbourhood structures for the job shop scheduling problem with operators and 
makespan minimization. In particular we propose extending the well-know structure, termed N1, 
defined for the classic job shop scheduling problem. These structures will then be incorporated in 
the genetic algorithm and it is expected that the resulting memetic algorithm reaches better 
solutions than the original genetic algorithm. 

Evaluate the proposed strategies by means of an experimental study. In particular, we try to 
establish the conditions in which the proposed extensions may outperform the original genetic 
algorithm.  
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3. The Job Shop Scheduling Problem 

with Operators 

3.1. Problem formulation 

Formally the job-shop scheduling problem with operators can be defined as follows. We are 
given a set of � jobs { ��, … , ��} a set of � resources or machines {��, … , ��} and a set of � 
operators {��, … , ��}. Each job �� consists of a sequence of �� operations or tasks (���, … , ��� ). 

Each task ��! has a single resource requirement �" # , an integer duration �" # and a start time $%" # and an assisting operator �" # to be determined.  

A feasible schedule is a complete assignment of starting times and operators to operations that 
satisfies the following constraints:  

• The operations of each job are sequentially scheduled. 
• Each machine can process at most one operation at any time. 
• No preemption is allowed. 
• Each operation is assisted by one operator and one operator cannot assist more than one 

operation at the same time.  

The objective is finding a feasible schedule that minimizes some objective function. This 
problem was first defined in [Agnetis et al. 2011] for makespan minimization and is denoted as ���(�, �). In this work, we consider two objective functions: the makespan, which is the 
completion time of all the operations, and the total flow time, obtained by summing up the 
completion time of all the jobs. The second may be more interesting from a practical point of view 
in a number of domains, as manufacturing, and usually makes the problem harder to solve 
[González et al. 2010] [Brucker and Knust 2006]. 

The significant cases of this problem are those with � <  �'�(�, �), otherwise the problem is a 
standard job-shop problem. 

Figure 1 shows a Gantt chart for a feasible schedule to an instance with 3 jobs, 3 machines and 2 
operators. The operations are labeled with the required resource and the assisting operator. It can 
be easily seen that all the constraints of the problem are satisfied and, as there are only two 
operators available, no more than two operations are ever processed in parallel. The makespan of 
the schedule is 14, and its total flow time is 14+13+10=37. 
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Figure 1: A Gantt chart for a feasible schedule to a problem with 3 jobs, 3 machines and 2 operators. 

3.2. A disjunctive graph model 

Scheduling problems are usually represented by means of a disjunctive model, which was first 
proposed in [Roy and Sussman 1964]. This kind of modeling allows to solve the problem by 
deciding about the relative order among operations that share the same resources, instead of 
considering for every operation all its possible starting times. We propose here to use the 
following model for the ���(�, �) that is similar to that used in [Agnetis et al. 2011]. A problem 
instance is represented by a directed graph ( = (*, + ∪ - ∪ . ∪ �). Each node in the set * 
represents either an actual operation, or any of the fictitious operations with null processing time 
introduced with the purpose of giving the graph a particular structure. These fictitious operations 

include starting and finishing operations for each operator ' , denoted ��/0120  and ��3�4 
respectively, and the dummy operations $%56% and 7�8. 

The arcs in +  are called 9:�;<�9%'�7 569$  and represent precedence constraints among 
operations of the same job. The arcs in - are called 8'$;<�9%'�7 569$ and represent capacity 
constraints. - is partitioned into subsets -� with - =∪{�=�,…,>} -�. -� includes an arc (�, ?) for 

each pair of operations requiring the resource ��. The set � of :�765%:6 569$ includes three 
types of arcs: one arc (<, �) for each pair of operations of the problem, and arcs (��/0120, <) and (<, ��3�4) for each operator node and operation. The set . includes arcs connecting node $%56% to 

each node ��/0120 and arcs connecting each node ��3�4 to node 7�8. The arcs are weighted with 
the processing time of the operation at the source node. 

From this representation, building a solution can be viewed as a process of fixing disjunctive 
and operator arcs. A disjunctive arc between operations < and � gets fixed when one of (<, �) or (�, <) is selected and consequently the other one is discarded. An operator arc between < and � is 
fixed when (<, �), (�, <) or none of them is selected, and fixing the arc (��/0120, <)  means 

discarding (��/0120 , �) for any operation � other than <. Analogously for (<, ��3�4). 

Therefore, a feasible schedule �  is represented by an acyclic subgraph of ( , of the form (@ = (*, + ∪ A ∪ . ∪ B), where A expresses the processing order of operations on the machines 
and B expresses the sequences of operations that are assisted by each operator. In other words, A =∪�=�,…,� A�, A� being a subset of -� that includes the arc (<, �) iff < is processed before � in � . B =∪�=�,…,� B�, where B� is a subset of B that represents the order in which the C� operations 

assisted by the operator �� are processed. So, it includes the arcs (��/0120, <�� ), (<D � , ��3�4) and (<, �) for each pair of operations assisted by the operator �� such that < is processed before �. 
For each operation <, at least two arcs of the form (<, −) and (−, <) are in some B�  and if one of 
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these arcs is in B�  none of the remaining arcs involving < belongs to BF, ' ≠ ;. The makespan is 

the cost of a 96'%'95H �5%ℎ in (@. A critical path is a longest cost path from node $%56% to node 7�8. Analogously, the total flow time is computed as the sum of the longest cost paths in (@ 
through the last operation of each job. 

Figure 2 shows a solution graph for the schedule represented in Figure 1. Discontinuous arrows 
represent operator arcs. So, the sequences of operations assisted by operators �� and �J are (�J�, ���, �KJ, ��J, ��K) and (�K�, �JJ, �JK, �KK) respectively. In order to simplify the picture, only 
disjunctive and operator arcs between consecutive operations in a machine or an operator 
respectively are shown. Continuous arrows represent conjunctive arcs and doted arrows represent 
disjunctive arcs; in these cases only arcs not overlapping with operator arcs are drawn. In this 
example, a critical path is given by the sequence (�J�, ���, �KJ, ��J, �KK), so the makespan is the 
cost of this path, that is, 14. 

 

 

Figure 2: A disjunctive graph representing the schedule of Figure 1. 

 

In order to simplify expressions, we define the following notation for a feasible schedule. The 
head 6� of an operation � is the cost of the longest path from node $%56% to node �, i.e. it is the 
value of $%�. The tail L�  is defined so as the value L� + �� is the cost of the longest path from � 
to 7�8. Hence, 6� + �� + L� is the makespan if � is in a critical path, otherwise, it is a lower 
bound. NO� and �O� denote the immediate predecessor and successor of � respectively on the 
machine sequence, N�� and ��� denote the immediate predecessor and successor operations of � 
respectively on the job sequence and N��  and ���  denote the immediate predecessor and 
successor operations of � respectively on the operator of �. 

A partial schedule is given by a subgraph of ( where some of the disjunctive and operator arcs 
are not fixed yet. In such a schedule, heads and tails can be estimated as 

6� = �5P Q maxU⊆W(�) QminF∈U 6F + [ �FF∈U \ , maxU⊆W](�) QminF∈U 6F + [ �FF∈U \ , 6WU^ + �WU^\ 
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L� = �5P Q maxU⊆@(�) Q[ �FF∈U + minF∈U LF\ , maxU⊆@](�) Q[ �FF∈U +minF∈U LF\ , �@U^ + L@U^\ 

 

with 6/0120 = L3�4 = 6] _`ab` = L] cde = 0 and where N(�) denotes the disjunctive predecessors 

of � , so as for all ? ∈ N(�) , �g = ��  and the disjunctive arc (?, �)  is already fixed 
(analogously, �(�)  denotes the disjunctive successors of � ). N�(�)  denotes the operator 
predecessors of �, i.e ? ∈ N�(�) if it is already established that �g = �� and ? is processed 
before �, so as the operator arc (?, �) is fixed (analogously, ��(�) are the operator successors of �). 
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4. Genetic Algorithm for the ���(�, �) 

The (h used here is taken from [Mencía et al. 2011]. The encoding schema is based on 
permutations with repetition as it was proposed in [Bierwirth 1992]. A chromosome is a 
permutation of the set of operations that represents a tentative ordering to schedule them, each one 
being represented by its job number. For example, the sequence (2 1 1 3 2 3 1 2 3) is a valid 
chromosome for a problem with 3 jobs and 3 machines. As it was demonstrated in [Mattfeld 
1995], this encoding has a number of interesting characteristics for the classic job shop 
scheduling problem; for example, it tends to represent orders of operations as they appear in good 
solutions. So, it is expected that these characteristics are to be good for the ���(�, �) as well. 

For chromosome mating, the (h uses the Job Order Crossover (��i) described in [Bierwirth 
1992]. Given two parents, ��i selects a random subset of jobs and copies their genes to the 
offspring in the same positions as they are in the first parent, then the remaining genes are taken 
from the second parent so as they maintain their relative ordering. We clarify how ��i works by 
means of an example. Let us consider the following two parents 

Parent1 (2 1 1 3 2 3 1 2 3)  Parent2 (3 3 1 2 1 3 2 2 1) 

If the selected subset of jobs from the first parent just includes the job 2, the generated offspring 
is 

Offspring (2 3 3 1 2 1 3 2 1). 

Hence, operator ��i maintains for each machine a subsequence of operations in the same order 
as they are in parent 1 and the remaining in the same order as they are in parent 2. 

To evaluate chromosomes, the (h uses the algorithm �(&k described in [Sierra et al. 2011], 
[Mencía 2010] and [Mencía et al. 2011], which is an extension of the original G&T proposed in 
[Giffler and Thompson 1960], so that the non-deterministic choice is done by looking at the 
chromosome: the operation in B which is in the leftmost position in the chromosome sequence is 
selected to be scheduled next. We explain this algorithm in Section 5, together with an extension 
to it. 

The remaining elements of (h  are rather conventional. To create a new generation, all 
chromosomes from the current one are organized into couples which are mated and then mutated 
to produce two offspring in accordance with the crossover and mutation probabilities 
respectively. Finally, tournament replacement among every couple of parents and their offspring 
is done to obtain the next generation. 
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5. Hybrid OG&T 

In this work we extend an algorithm to generate schedules for the ���(�, �) problem. In this 
section, we explain the algorithm and its new extension. 

5.1. 	
&� schedule generation scheme 

We present a schedule generation scheme termed �(&k that was proposed by [Sierra et al 
2011]. This is a schedule generation scheme for the ���(�, �) which is an extension of the 
well-known (&k algorithm proposed in [Giffler and Thompson 1960] for the classic job shop 
scheduling problem. The operations are scheduled one at a time following a sequence of non 
deterministic choices. When an operation < is scheduled, its preceding operation in the job 
sequence, denoted N�l, was already scheduled if this operation exists. At this time, < is assigned a 
starting time $%l and an operator ��, 1 ≤ ' ≤ �. 

In order to select the candidate operations to be scheduled next, we start considering a naive 
strategy to establish an initial set of candidates which is subsequently restricted by means of some 
local pruning rules. Let �+ be the set of scheduled operations at an arbitrary time. Then, the next 
non deterministic choice may be any operation of the set h defined as 

h = {� ∉ �+, ∄N�� ∨ (N�� ∈ �+)} 
i.e., the set that includes the first unscheduled operation of each job that has at least one 

unscheduled operation. If the operation < in h is selected, the starting time of < is given by its 
head 6l which is calculated as 

6l = max {6WUr + 6WUr , 6� + �� , min�s�s� %�} 
where %�, 1 ≤ ' ≤ �, is the time at which the operator �� is available and � denotes the last 

operation scheduled having ��  = �l. At the same time, the operator �� that is available at the 
latest time before 6l, i.e. 

' = arg max{%F; %F ≤ 6l; 1 ≤ ; ≤ �} 
is assigned to assist the operation <. Let �∗ be the operation in h having the earliest completion 

time if it were scheduled next, i.e. 

�∗ = arg min{6l + �l; < ∈ h}. 
The set of non-deterministic choices may be reduced to the subset h′ ⊆ h 

h′ = {< ∈ h; 6l < 6�∗ + ��∗} 
Moreover, the set of choices can be further restricted in the following way. Let xy < ⋯ < xD be 

the sequence of all times along the interval [min|6l; < ∈ h′} , 6�∗ + ��∗), where each x� is given 

by the head of some operation in h′ or the time at which some operator becomes available. Let ��′  
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be the number of operators available in the subinterval [x�, x�~�) and let ��′  be the number of 

different machines that are required by the operations in h′ which may be processed along this 

subinterval. Then, h′ may be reduced as long as the following operations are maintained: 

i. The operations requiring the same machine as �∗. 
ii. For each interval [x� , x�~�) with ��′ > ��′ , the operations required by at least ��′ − ��′  

machines. 

The set of operations obtained in this way is termed � and it is clear that |�| ≤ |h′| ≤ |h|. An 
important property of this schedule generation scheme is that if the number of operators is large 
enough, in particular if � ≥ �'�(�, �) so as ���(�, �) becomes �|| ∑ +�, it is equivalent to the (&k algorithm. Sierra et al. (2011b) give a full description of �(&k together with a formal proof 
of its dominance property, i.e. the search space contains at least one optimal solution. 

So, in accordance with the above, a state is a partial schedule. In the initial state all operations 
are unscheduled and the remaining states correspond to each one of the situations that may be 
generated by the algorithm �(&k after one of the operations of the set � is scheduled. Figure 3 
shows a partial schedule that represents a feasible state to a problem with 5 jobs, 5 machines and 
3 operators. In accordance with the �(&k , in this situation h = {��K, �JJ, �KJ, ��J, ���} , h′ = {�JJ, �KJ, ��J, ���}  and � = {�KJ, ��J, ���}  (if �J  and ��  are chosen from the interval [x�, +)). Therefore, this state has 3 successors as a result of scheduling the operations �KJ, ��J 
and ��� respectively. For a state �, �(�) is the total flow time of the partial schedule, i.e. the 
summation of the completion times of the last operation scheduled in each job, and consequently 
the cost 9(�, �′) from � to a successor �′ is the variation of this value from � to �′. So, for the 

state � in Figure 3, �(�)  =  19 and if �′ is the result of scheduling �KJ from �, then 9(�, �′) =7. The goals are those states having all operations scheduled. 

 

Figure 3. A partial schedule to a problem with 5 jobs, 5 machines and 3 operators. 

5.2. Extending the 	
&� algorithm 

In its original formulation, the (&k algorithm was shown to be able to generate all the possible 
active schedules for the classic job shop problem. In these schedules, at least one operation has to 
be delayed in order to start the processing of another operation earlier, i.e., there are no machines 



15 
 

idle along a whole period where an operation could be completely processed. Active schedules 
constitute a subset of the feasible schedules that contains at least one optimal solution.  

The concept of active schedule is not yet formalized for the ���(�, �) problem, and it is not 
trivial due to the limited number of assisting operators as a new resource type. Nevertheless, the 
reduction made by the �(&k algorithm from the set h to h’, taking only the operations that can 
start before the earliest possible completion time of �∗, guarantees that no operation can be 
processed earlier in a schedule without delaying at least other operation. 

Although the set of schedules defined by the �(&k algorithm is smaller than the set of the 
feasible schedules, it may be still very large for large instances. This way, we propose extending 
this algorithm in order to achieve further reductions, yet loosing the possibility of finding an 
optimal solution. 

For doing so, we introduce a real parameter, termed delta, which varies from 0 to 1. Then, we 
reduce � to �′, by defining 

�� = {< ∈ �; 6l < min{6g; ? ∈ �} + 87H%5 ∗ ((6�∗ + ��∗) − (min{6g; ? ∈ �}))} 
So, depending on the value of the delta parameter, the considered search space would be 

different. 

• If delta is 1, the interval of release times of the operations considered does not change, 
which means that the search space is the same.  

• In the rest of the cases, this interval changes by moving its superior limit to the left, so 
limiting the maximum time machines can be idle while there is some operation that 
can start its processing. Hence, the search space is reduced and it might eventually not 
contain an optimal solution to the problem. The greatest reduction of the search space 
is achieved with delta = 0, where no idle times for the machines are allowed. These 
schedules are termed dense or non-delay in the classic job shop scheduling problem. 

It is expected that giving delta a value lower than 1 may be worthwhile if the problem instance is 
large. It is our hypothesis that the larger the instance, the lower the delta parameter should be. 
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6. Neighborhood structures for the 

JSO 

This section describes a neighborhood structure for the problem JSO based on one of the 
structures used in the classic Job Shop Scheduling problem called N1. What we do here is to 
extend the structures proposed in [Mencía 2012] so as the operators, and not only the machines, 
are also taken into account. 

To improve clarity, firstly we explain the structure and then how we adapt it to the JSO. 

6.1. Neighborhood structure �
 for ���(�) 

To understand the neighborhood structure �� it is necessary to introduce the concept of critical 
block, which is defined as a maximal sequence of operations that need the same resource in a 
critical path of a schedule. 

Given a schedule for the problem, the structure �� is based in reversing the order of operations 
that belong to the same critical block, trying to avoid moves that won't yield an improvement. 

The following lemmas establish the base of this neighborhood structure. Their proofs can be 
found in [Mattfeld 1995]. 

Lemma 3.1.1. Reversing one critical arc in (@ cannot lead to a cycle and therefore cannot result 
in an infeasible solution. 

Lemma 3.1.2. If the reversal of a non-critical arc in � leads to a feasible solution �′, then �(�′) ≥ �(�) holds. 

Lemma 3.1.3. The reversal of a critical arc (�, ?) can only lead to an improvement if at least 
one of NO� and �Og is non-critical. 

Lemma 3.1.4. Let v and w be the first two successive operations of the first block. Reversing 
the critical arc (�, ?) cannot lead to a makespan improvement. Analogous let � and ? be the last 
two successive operations of the last block. Again, no improvement can be gained by reversing �, ?. 

Definition  (��). Given �, the neighborhood ��(�) consists of all schedules derived from � by 
reversing one arc (�, ?) of a critical path in (@. At least one of � and ? is either the first or the 
last member of a block. For the first block only  � and ? at the end of the block are considered 
whereas for the last block only � and ? at the beginning of the block must be checked. 
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6.2. Adaptation of �
 for ��	(�, �) 

In this work we design neighborhood structures based in the reversal of one arc in the critical 
path. 

In order to do that, we first explain the types of arcs that there are in the solution graph and we 
give a number of lemmas on which the neighborhood structures are based. 

6.2.1. Types of arcs 

(�, ?) is a conjunctive arc or an arc of type �  if �� = �g, �� ≠ �g, O� ≠ Og. 

(�, ?) is an arc of machine or an arc of type O  if O� = Og, �� ≠ �g, �� ≠ �g. 

(�, ?) is an arc or operator or an arc of type � if �� = �g, �� ≠ �g, O� ≠ Og. 

(�, ?) is an arc of job and operator or an arc of type ��  if �� = �g, �� = �g, O� ≠ Og. 

(�, ?) is an arc of machines and operator or an arc of type O�  if O� = Og, �� = �g, �� ≠ �g. 

The arcs that can be reversed are those of type O�, O, and �. Arcs of type �, and �� cannot be 
reversed because that would imply changing the order of two operations in a jobs which would 
lead to an infeasible solution. 

In the following section we explain how to reverse the arcs in a schedule. 

Reversal of arc of type MO 

In Figure 4 we can see a part of a schedule were (�, ?) is of type O�. In the graphs, an arc of 
type O� is represented as a pair of arcs, one of type O and the other of type �. The arcs of type � 
are represented as black continuous arrows, the arcs of type O  are represented as blue 
discontinuous arrows and the arcs of type � are represented as red dotted arrows. 

 

 

 

 

 

 

 

 

 

 

��g ? � 

��g 

��� 

N�g 

NO� �Og 

N�� 

N�� 

Figure 4. Graph before the arc of type MO reversal.    
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As can be seen in Figure 5, apart from reversing the O� arc, we have to exchange the remaining 
predecessors and successors of � and ?.  For example, the predecessor of � in the operator before 
the reversal is the predecessor of ? after the reversal. 

 

 

 

 

 

 

 

 

 

 

Reversal of arc of type M 

In Figure 6 we can see a part of an schedule were (�, ?) is of type O. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 shows the result of reversing (�, ?). 
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Figure 5. Graph after the arc of type MO reversal. 

Figure 6. Graph before the arc of type M reversal. 
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Reversal of arc of type O 

In Figure 8 we can see a part of an schedule were (�, ?) is of type �.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 shows the result of reversing (�, ?). 
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Figure 7. Graph after the arc of type M reversal. 

Figure 8. Graph before the arc of type O reversal. 
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6.2.2. Important concepts 

In this section we start introducing some notions which are required to understand the proposed 
neighborhood structures. 

Definition (Critical path):  A maximum cost path from node start to node end. 

Definition (Critical block):  Maximal subsequence of operations of a critical path that use 

• the same machines (machines critical block), or 
• the same operator (operator's critical block). 

Note that the arcs of a machines critical block are of type O or O�, and the arcs of an operator's 
critical block are of type �, O� or ��. Arcs of type �� cannot be reversed. 

In order to clarify how these structures work, two illustrative examples are added. 

Example of machines critical blocks: 

Figure 10 shows an abstraction of a critical path of a schedule. Each circle represents an 
operation and it's indicated in which resource (machine) is processed. 

 

 

 

 

As we can see, in the critical path there are 3 resources (��, �J and �K). 
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�� �� �J �J �J  �K �� �� 

Figure 10: Critical path of a schedule. 

Figure 9. Graph after the arc of type O reversal. 
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To generate neighboring schedules, at first we need to find the existing critical blocks in a 
critical path. So, as it has been explained before, we take the maximal subsequences of operations 
that use the same resource. In Figure 11 we can see a critical path with four critical blocks. 

 

 

 

 

 

The first block consists of 4 operations that use the resource ��. The second block consists of 3 
tasks that use the resource �J. The third block consists of 1 operation that uses the resource �K. 
And, the fourth block consists of 2 operations that use the resource ��. 

 

Example of operator's critical blocks: 

Figure 12 shows an abstraction of a critical path of a schedule. Each circle represents an 
operation and it is indicated which operator processes it. 

 

 

 

 

As we can see, in the critical path there are 3 operators (��, �J and �K). 

To generate neighboring schedules, at first we need to find the existing critical blocks in a 
critical path. So, as it has been explained before, we take the maximal subsequences of operations 
that use the same operator. In Figure 13 we can see a critical path with four operator's critical 
blocks. 

 

 

 

 

 

The first block consists of 4 operations that use the operator ��. The second block consists of 3 
tasks that use the operator �J. The third block consists of 1 operation that uses the operator �K. 
And, the fourth block consists of 2 operations that use the operator ��. 
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Figure 11: Machines critical blocks. 
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Figure 12: Critical path of a schedule. 
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Figure 13: Operator's critical blocks. 
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Definition (Critical arc):  An arc that is in the critical path. It can be of any type (�, ��, O, �, O�). 

 

Lemma: If an arc (�, ?) of (@  is critical, then the only path from � to ? in (@ is the arc (�, ?). 

Proof: Any other path from � to ? has at least two arcs (�, P) and (�, ?). The arc (�, P) has the 
same cost as the arc (�, ?), thus the cost of this path would be larger than the cost of the arc (�, ?) and in that case (�, ?) would not be in the critical path. 

Corollary:  If (�, ?) of type O, �, or O� is critical in (@, then the (@′ which is obtained from (@  by reversing (�, ?) does not have cycles and thus represents a feasible solution. 

 

Lemma: If an arc (�, ?) that is not critical in (@ is reversed, then the resulting graph (@′, in the 
cases where it is not acyclic, represents a solution which is not better than that of (@. 

Proof: The critical path of (@ remains in (@′ after reversing the non-critical arc. 

 

Lemma: If a critical arc (�, ?) is reversed in (@, and (�, ?) is internal to a mahines critical 
block and internal to an operator's critical block, the resulting solution (@′ is not better than (@. 

Proof: If (NO�� , �, ?, �O�g) are successive operations on a critical path, reversing (�, ?) 
does not change the starting time 6@>]� as 6W>]^ + �� + �g = 6@>]�. Therefore this reversal 

cannot lead to an improvement. 

 

Lemma: If (�, ?) is the first arc of the first critical block, or the last arc of the last critical block, 
then the reversal of (�, ?) cannot produce any improvement (unless the block has only two 
operations). 

Proof: What makes this case different to the other is that the predecessor of the operation � is 
the node start, which has null duration. This means that the head of the successor of ? would stay 
the same (�� + �g) and the critical path would be the same since the successor of ? being in the 
critical path means that there is no other path linking ? and that successor of higher cost, thus 
there is not any improvement. 

 

6.2.3. Definition of neighborhood structures 

According to the results explained before, the only options to improve, with a simple reversal of 
an arc, is to reverse arcs (�, O, or O�) that are in the borders of a critical block, with the 
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exception of the first arc of the first block and the last arc of the last block in case that his block 
have only two tasks. 

Firstly, we will define three neighborhood structures, ���, ��J and ��K. After that we will define 
the structure ��] which is the union of them. 

Definition ( �

 ). Given an schedule � , the neighborhood ���(�)  is defined as the set of 
schedules obtained from (@ by reversing an arc (�, ?) such that 

i. (�, ?) is critical 
ii. (�, ?) is of type O� 
iii.  (�, ?) is neither in the interior of a machine critical block nor in the interior of an 

operator’s critical block 
iv. (�, ?) is not the first arc of the critical path being the length of the critical block it 

belongs to larger than 2 
v. (�, ?) is not the last arc of the critical path being the length of the critical block it belongs 

to larger than 2. 

 

Definition ( �
� ): Given an schedule � , the neighborhood ��J(�)  is defined as the set of 
schedules obtained from (@ by reversing an arc (�, ?) such that 

i. (�, ?) is critical 
ii. (�, ?) is of type � or O� 
iii.  If (�, ?) is of type �, it is not in the interior of an operator’s critical block 
iv. If (�, ?) is of type O�, it is not in the interior of an operator’s critical block, and it is in 

the interior of a machines critical block 
v. (�, ?) is not in the interior of an operator’s critical block 
vi. (�, ?) is not the first arc of the critical path being the length of the first operator’s critical 

block larger than 2 
vii.  (�, ?) is not the last arc of the critical path being the length of the last operator’s critical 

block larger than 2. 

 

Definition ( �
� ): Given an schedule � , the neighborhood ��K(�)  is defined as the set of 
schedules obtained from (@ by reversing an arc (�, ?) such that 

i. (�, ?) is critical 
ii. (�, ?) is of type O or O� 
iii.  If (�, ?) is of type O, it is not in the interior of an machines critical block 
iv. If (�, ?) is of type O�, it is not in the interior of an machines critical block, and it is in 

the interior of a operator’s critical block 
v.  (�, ?) is not the first arc of the critical path being the length of the first machines critical 

block to larger than 2 
vi. (�, ?) is not the last arc of the critical path being the length of the last machines critical 

block to larger than 2. 
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Definition ( �
	 ): Given an schedule � , the neighborhood ��](�)  is defined as the set of 
schedules obtained from (@ by reversing an arc (�, ?) such that 

i. (�, ?) is critical 
ii. (�, ?) is of type �, O or O� 
iii.  (�, ?) is not at the same time in the interior of a machine critical block and in the interior 

of an operator’s critical block 
iv. (�, ?) is not the first arc of the critical path being the length first critical block that it 

belongs to larger than 2 
v. (�, ?) is not the last arc of the critical path being the length of the critical block it belongs 

to larger than 2. 

 

Notice that ��] = ��� ∪ ��J ∪ ��K 

Note that the neighborhood structures ��J  and ��K  could be divided into two separate 
neighborhood structures, one for each type of arc. Firstly, the neighborhood structure ��J, it can 
be divided into one structure for the arcs of type �, and the other one for the arcs of type O� that 
it contains. Then, the neighborhood structure ��K can be divided into one structure for the arcs of 
type O and another structure for the arcs of type O� that it contains. 

 

We clarify by means of an example how these neighborhood structures work. 

Figure 14 shows an abstraction of a critical path of a schedule. Each circle represents an 
operation and it is indicated which operator processes it and on which resource (machine) it is 
processed. 

 

 

 

 

As we can see, in the critical path there are 3 machines (��, �J and �K) and 3 operators (��, �J and �K). 

To generate neighboring schedules, we have to indentify all the existing critical blocks in a 
critical path. In Figure 15 we can see a critical path with four machines critical blocks and another 
four operator's critical blocks. The machines critical blocks are represented with blue boxes and 
the operator's critical blocks are represented with red boxes. 

 

�� �� �� �� �J  �J �J �K ��  ��  
�� �K �� �� �J �J �J �J �K �K 

Figure 14. Critical path of a schedule. 
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The first machines block consists of 4 operations that use the machine ��. The second machines 
block consists of 3 tasks that use the machine �J.  The third machines block consists of 1 
operation that uses the machine �K. And, the fourth machines block consists of 2 operations that 
use the machine ��. 

The first operators block consists of 2 operations that use the operator ��. The second operators 
block consists of 4 tasks that use the operator �J. The third operators block consists of 1 operation 
that uses the operator �K. And, the fourth operators block consists of 3 operations that use the 
operator ��. 

 

As explained before, ��� generates neighbors reversing arcs that are both at the border of a 
machines critical blocks and at the border of an operator's critical blocks (with the exception of 
the first arc of the first block and the last arc of the last block in the case in which these blocks 
have more than 2 operations). ��J generates neighbors reversing arcs that are at the border of an 
operator's critical block and are not at the border of a machines critical block (with the exception 
of the first arc of the first block and the last arc of the last block in the case in which these blocks 
have more than 2 operations). ��K generates neighbors reversing arcs that are at the border of a 
machines critical block and are not at the border of an operator's critical block (with the exception 
of the first arc of the first block and the last arc of the last block in the case in which these blocks 
have more than 2 operations). ��] is the union of all the previous structures. 

Figure 16 shows the arcs painted in colors depending which neighborhood structure would 
reverse them. Also, it shows the type of the candidate arcs to be reversed. Note that the arcs of 
type � could be of type �� as well, but let us imagine that they are of type �. 

 

 

 

 

 

Figure 16 shows the arcs that would be reversed by each structure. 

The green arcs would be reversed in the neighborhood structure  ���. 
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Figure 15. Critical blocks. 

Figure 16. Critical arcs to reverse. 



26 
 

The red arcs would be reversed in the neighborhood structure  ��J. 

The blue arcs would be reversed in the neighborhood structure  ��K. 

The neighborhood structure ��] would reverse the green, the red and the blue arcs, as it is 

defined as the union of the other three structures (��] = ��� ∪ ��J ∪ ��K). 

 

So, in this example,  

• ��� would have create 2 neighboring solutions by reversing 2 arcs of type O�.  
• ��J would have create 2 neighboring solutions by reversing an arc of type O� and an arc 

of type �. 
• ��K would have create 2 neighboring solutions by reversing an arc of type O� and an arc 

of type O. 

• ��] would have create 6 neighboring solutions by reversing 4 arcs of type O�, 1 arc of 
type O and 1 arc of type �. 

 

6.2.4. Makespan estimation 

Makespan estimation is a very important concept in this work as it can help to save a lot of 
computation time. The idea is not to generate solutions that we know before-hand that are not 
better than the current one.  

The makespan estimation is based on heads and tails. Let 6′�, 6′g, L′� and L′g be the heads and 

tails of the operations � and ? after the reversal of (�, ?). The makespan of the neighboring 
solution can be efficiently estimated as: 

+′�1� = �5P(6′g + �g + L′g, 6′� + �� + L′�) 

which is a lower bound of the actual makespan after reversing (�, ?). 
 

Heads and tails after a MO reversal 

In order to make it simpler to understand we are using Figure 17. Remember that the arcs of type �  are represented as black continuous arrows, the arcs of type O  are represented as blue 
discontinuous arrows and the arcs of type � are represented as red dotted arrows. 
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Let us start with the heads. In order to calculate de heads of a node we need to know the heads of 
its predecessors and their durations. Knowing all of them, we take the maximum due to the 
definition of o head. 

As we can see in Figure 17, ? has three predecessors, NO�, N�g and N��. Then, its head would 
be calculated as 6′g = �5P(6W>^ + �W>^ , 6WU� + �WU� , 6W]^ + �W]^). On the other hand, � has 

two predecessors, ? (whose head has already been calculated) and N��. So, its head after the 

reversal can be calculated as 6′� = �5P(6′g + �g , 6WU^ + �WU^). 

Now lets us deal with the tails. In order to calculate de tail of a node we need to know the tails of 
its successors and their durations. Knowing all of them, we take the maximum due to the 
definition of tail. 

As we can see in Figure 17, � has three successors, �Og, ��� and ��g. Therefore, its new tail is 
calculated as L′� = �5P(L@>� + �@>� , L@U^ + �@U^ , L@]� + �@]�). On the other hand, ? has two 

successors, � (whose tail has already been calculated), and ��g. So, its tail can be calculated as L′g = �5P(L′� + �� , L@U� + �@U� , L@]^ + �@]^). 

To sum up, the values 6′�, 6′g, L′� and L′g after reversing the arc (�, ?) of the type MO are  

6′g = �5P(6W>^ + �W>^ , 6WU� + �WU� , 6W]^ + �W]^) 

6′� = �5P(6′g + �g , 6WU^ + �WU^) 

L′� = �5P(L@>� + �@>� , L@U^ + �@U^ , L@]� + �@]�) 

L′g = �5P(L′� + �� , L@U� + �@U�) 

 

��g ? � 

��g 

��� 

N�g 

NO� �Og 

N�� 

N�� 

Figure 17. Graph after the arc of type MO reversal. 
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Heads and tails after a M reversal 

In order to make it simpler to understand we are using Figure 18. 

 

 

 

 

 

 

 

 

 

 

 

Let us start with the heads. In order to calculate de heads of a node we need to know the heads of 
its predecessors and their durations. Knowing all of them, we take the maximum due to the 
definition of head. 

As we can see in Figure 18, ? has three predecessors, NO�, N�g and N�g. Then, its new head 
would be calculated as 6′g = �5P(6W>^ + �W>^ , 6WU� + �WU� , 6W]� + �W]�). On the other hand, � has another three predecessors, ? (whose head has already been calculated), N�� and N��. So, 

its head can be calculated as 6′� = �5P(6′g + �g , 6WU^ + �WU^ , 6W]^ + �W]^). 

Now lets us deal with the tails. In order to calculate de tail of a node we need to know the tails of 
its successors and their durations. Knowing all of them, we take the maximum due to the 
definition of tail. 

As we can see in Figure 18, � has three successors, �Og, ��� and ���. Therefore, its new tail 
would be calculated as L′� = �5P(L@>� + �@>� , L@U^ + �@U^ , L@]^ + �@]^). On the other hand, ? has three successors as well, � (whose tail has already been calculated), ��g and ��g. So, its 

tail can be calculated as L′g = �5P(L′� + �� , L@U� + �@U� , L@]� + �@]�). 

To sum up, the values 6′�, 6′g, L′� and L′g of after reversing the arc (�, ?) of the type MO are  

6′g = �5P(6W>^ + �W>^ , 6WU� + �WU� , 6W]� + �W]�) 

6′� = �5P(6′g + �g , 6WU^ + �WU^ , 6W]^ + �W]^) 

L′� = �5P(L@>� + �@>� , L@U^ + �@U^ , L@]^ + �@]^) 

��g ? � 
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��� N�g 
NO� �Og 
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N�� ��� N�g 

Figure 18. Graph after the arc of type M reversal. 
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L′g = �5P(L′� + �� , L@U� + �@U� , L@]� + �@]�) 

 

Heads and tails after a O reversal 

In order to make it simpler to understand we are using Figure 19. 

 

 

 

 

 

 

 

 

 

 

 

Let us start with the heads. In order to calculate de heads of a node we need to know the heads of 
its predecessors and their durations. Knowing all of them, we take the maximum due to the 
definition of head. 

As you can see in Figure 19, ? has three predecessors, NOg, N�g and N��. Then, its new head 
would be calculated as 6′g = �5P(6W>� + �W>� , 6WU� + �WU� , 6W]^ + �W]^). On the other hand, � has another three predecessors, ? (whose head has already been calculated), NO� and N��. So, 

its head can be calculated as 6′� = �5P(6′g + �g , 6WU^ + �WU^ , 6W>^ + �W>^). 

Now lets us deal with the tails. In order to calculate de tail of a node we need to know the tails of 
its successors and their durations. Knowing all of them, we take the maximum due to the 
definition of tail. 

As you can see in Figure 19, � has three successors, �O�, ��� and ��g. Therefore, its new tail 
would be calculated as L′� = �5P(L@>^ + �@>^ , L@U^ + �@U^ , L@]� + �@]�). On the other hand, ? has three successors as well, � (whose tail has already been calculated), �Og and ��g. So, its 

tail can be calculated as L′g = �5P(L′� + �� , L@U� + �@U� , L@>� + �@>�). 

To sum up, the values 6′�, 6′g, L′� and L′g of after reversing the arc (�, ?) of the type MO are  

6′g = �5P(6W>� + �W>� , 6WU� + �WU� , 6W]^ + �W]^) 

��g ? � 
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��� N�g 
NO� �Og 
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N�� �O� NOg 

Figure 19. Graph after the arc of type O reversal. 
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6′� = �5P(6′g + �g , 6WU^ + �WU^ , 6W>^ + �W>^) 

L′� = �5P(L@>^ + �@>^ , L@U^ + �@U^ , L@]� + �@]�) 
L′g = �5P(L′� + �� , L@U� + �@U� , L@>� + �@>�) 

6.3. Example 

Here is an example with a real schedule in which we can see more clearly how to apply the 
proposed neighborhood structure and how to improve the schedule with a slight transformation. 

It starts with a schedule for a ��� problem instance of 3 jobs, 3 machines and 2 operators. 

Figure 20 shows the corresponding disjunctive graph. In it, conjunctive arcs are represented 
with continuous lines, discontinuous lines represent the disjunctive arcs and dotted lines represent 
the operator arcs. For the sake of clarity, we only show the arcs that connect adjacent operations in 
the schedule. 

 

 

Also, thick arcs represent a critical path in the graph, formed by the nodes (0, �Jy, �J�, �JJ, �JK, �yJ, �yK, �J∗, ∗), whose cost is 32. Thus, the schedule has a makespan that is equal to 32. 

In order to facilitate understanding, the following Gantt chart of the previous schedule is given 
in Figure 21. Shaded operations are the critical path. 
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Figure 20: Disjunctive graph of the starting schedule. 
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Based on a critical path of the schedule, the neighborhood structure proposed calculates firstly 
the critical blocks. Figure 22 shows the critical path including the machines and the operators that 
each task uses. 

 

 

 

 

As it can be observed, between operations �J� and �JJ there are a conjunctive arc and an arc of 
operators. Similarly, operations �JK and �yJ are connected by two arcs, one for operators and one 
disjunctive. 

Machines critical blocks are maximal sequences of operations that share the machine. In the 
critical path depicted above 4 machines critical blocks can be identified. However, there is only 
one containing more than one operation and so it is the only one interesting for generating 
neighbors. This is shown in Figure 23. 

 

 

 

 

Operator’s critical blocks are maximal sequences of operations that share the same operator. In 
the critical path depicted above 3 operator’s critical blocks can be identified. However, there is 
only one containing more than one operation, so it is the only one interesting for generating 
neighbors. This is shown in Figure 24. 
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Figure 21: Gantt chart of the starting schedule. 
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Figure 22. Critical path of the schedule. 

Figure 23. Machines critical blocks. 
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Figure 25 shows the machines critical blocks marked in blue and the operator’s critical blocks 
marked in red. The types of the arcs are added as well. 

 

 

 

 

 

As explained before, ��� generates neighbors reversing arcs that are both at the border of a 
machines critical blocks and at the border of an operator’s critical blocks (with the exception of 
the first arc of the first block and the last arc of the last block in the case in which these blocks 
have more than 2 operations). ��J generates neighbors reversing arcs that are at the border of an 
operator’s critical block and are not at the border of a machines critical block (with the exception 
of the first arc of the first block and the last arc of the last block in the case in which these blocks 
have more than 2 operations). ��K generates neighbors reversing arcs that are at the border of a 
machines critical block and are not at the border of an operator’s critical block (with the exception 
of the first arc of the first block and the last arc of the last block in the case in which these blocks 

have more than 2 operations). ��] generates all the neighbors that the previous 3 neighborhood 
structures generates. 

So, looking at Figure 25, 

• The neighborhood structure ��� would generate one neighbor reversing the arc (�JK, �yJ) of type O�. 

• The neighborhood structure ��J would not generate any neighbor because the arc that 
it has is (�J�, �JJ), but it is of type �� so it cannot be reversed. 

• The neighborhood structure ��K would not generate any neighbor because it does not 
have any arc. 

• The neighborhood structure ��] would generate one neighbor reversing the arc (�JK, �yJ) of type O�. 

The block has two marked critical operations, �JK and �yJ, which require the machine M2 and 
are assisted by the operator op1. Therefore, to generate a neighbor schedule we only need to 
exchange the order of the operations (�yJ is processed before �J�). This requires reversing both 
disjunctive and operator arcs, as well as reorganizing the new predecessor of �J� and the new 
successor of �yJ. 
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Figure 24. Operator's critical blocks. 

Figure 25. Critical blocks. 
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Before generating definitively this neighbor, in accordance with the proposed method, we have 
to consider its estimated makespan, as it is indicated in Section [Makespan estimation]. If this 
value were larger or equal than the actual makespan of the current solution, the neighbor would be 
discarded as it is not an improving schedule. This procedure may discard efficiently many non 
improving solutions. The makespan estimation is based on heads and tails. The values 6′�, 6′g, L′� and L′g  after reversing the arc (�, ?) are different depending on the type of arc we are 
reversing as explained in the previous section. In this case, � is �JK and ? is �yJ. As said before, 
the arc we are reversing is of type O�. 

The heads and tails are calculated as follows. 

6′g = �5P�6W>^ + �W>^ , 6WU� + �WU� , 6W]^ + �W]^�= �5P�6"�� + �"�� , 6"�� + �"�� , 6"�� + �"��� = �5P(6 + 4, 0 + 6,6 + 4) = 10 

6′� = �5P�6�g + �g , 6WU^ + �WU^� = �5P�6�g + �g , 6"¡¡ + �"¡¡� = �5P(10 + 7,7 + 5)= 17 

L′� = �5P�L@>� + �@>� , L@U^ + �@U^ , L@]� + �@]�� = �5P�L∗ + �∗, L∗ + �∗, L"�£ + �"�£�= �5P(0 + 0, 0 + 0,0 + 5) = 5 

L′g = �5P�L�� + �� , L@U� + �@U�� = �5P�L�� + �� , L"�£ + �"�£� = �5P(5 + 6,0 + 7) = 11 

Using them we estimate the makespan as 

+′�1� = �5P�6�g + �g + L�g, 6�� + �� + L��� = �5P(10 + 7 + 11,17 + 6 + 5) = 28 

The estimated makespan (28) which is a lower bound of the makespan of the schedule that we 
would generate by reversing the arc, is lower than the current makespan (32), which means that 
the resulting solution could improve the current one, so we will generate it. 

Figure 26 shows the disjunctive graph corresponding to the generated neighboring solution. As 
before, only the operations connecting adjacent arcs in the schedule are depicted and the critical 
path is marked with thick arcs. 

 

 

��y 

�yJ 

�� 	
, � 

��� 

�� 	
, � 
��J 

�
 	�, � 
��K 

�� 	
, � 

�yK 

�
 	�, � 

�J� 

�
 	�, � 
�JJ 

�� 	�, � 
�JK 

�� 	
, � 

  0 
 

�y� 

�� 	
, � 

�Jy 

 �J∗ 

 

��∗ 

 

  ∗ 

 

Figure 26: Disjunctive graph of the neighboring schedule. 
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As it can be seen in the neighboring solution a critical path is (0, ��y, �y�, ���, �yJ, �JK, ��K, ��∗, ∗), whose makespan is 28. Therefore, the neighboring solution is better than the previous one. 

Figure 27 is the Gantt chart associated with this new schedule. 

 

 

In this example, there is only one neighboring schedule which has a makespan lower than that of 
the original schedule, the local search algorithm will repeat the process from the new schedule 
until there were no improvements or any other criterion fulfills. 
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Figure 27: Gantt chart of the neighboring schedule. 
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7. Memetic Algorithm for the JSO 

A memetic algorithm is defined from the combination of a genetic algorithm with local search. 
This kind of algorithms has been successful over the last years for a variety of combinatorial 
optimization problems [Talbi 2009], including scheduling problems [Vela et al. 2010]. 

The memetic algorithms proposed combine the genetic algorithm described in Section 4. with a 
Local Search Algorithm that uses the Neighborhood structures described in Section 6. 

As a result, we have four memetic algorithms, that we name, MA-��], MA-���, MA-��J and 
MA-��K. 

• MA-��] uses the neighborhood structure ��]. 

• MA-��� uses the neighborhood structure ���. 

• MA-��J uses the neighborhood structure ��J. 
• MA-��K uses the neighborhood structure ��K. 

The proposed local search algorithms use maximum gradient hill-climbing as 
selection/acceptation criteria. So, each time the local search is issued, all neighbors are calculated. 
If any of them is better than the current solution, then the best neighbor is taken as the new current 
solution, otherwise the algorithm finishes and returns the current chromosome.  

As we will see in the experimentation, in the first place we had opted to apply the local search 
algorithm to all the individuals generated by the genetic algorithm, instead of a portion of them. 
After that, we did the experiments issuing a local search with a probability of 0.2 for each 
individual, in order to gain diversity. 

The evolution model used is Lamarckian, i.e., the improved individuals substitute the original 
chromosomes after the local search when there are improvements, unlike in the Baldwinian 
model where only the fitness values are updated. 
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8. Experimental Study 

The purpose of this experimental study is to assess the efficiency and effectiveness of the 
methods proposed in this project.  

For doing so, we have experimented across a set of problem instances with different sizes and 
characteristics taken from the OR-Library [Beasley 1990] for the classical job shop scheduling 
problem. Concretely, we have used a relevant benchmark proposed in [Applegate and Cook 1991] 
that consists of the following instances: 

• 10x10: FT10 

• 20x5: FT20 
• 15x10: LA21, LA24, LA25 

• 20x10: LA27, LA29 
• 15x15: LA38, LA40 
• 20x15: ABZ7, ABZ8, ABZ9 

From each of them we have built new JSO(n, p) instances by ranging the number of operators 
available (p), from 1 to min{n,m}. Note that instances with p = min{n, m} are also instances of 
the JSS problem. So, we have 140 instances in all. 

For each instance, all the algorithms were run several times, giving the cost of the best solution 
found, the average cost of the solutions returned, the standard deviation and the average 
computation time taken. The first two values measure the effectiveness of the algorithm, while the 
fourth is a measure of the efficiency of the method. Then, for evaluating and comparing them, we 
have used the following metrics for each instance: 

• Best solution error (%), calculated as  

100 × §� − �7$% $:H<%':�§�  

• Solution's average error (%), calculated as 

100 × §� − �:H<%':�′$ 5�765�7§�  

• Pearson’s variation coefficient (%), calculated as  

+* = 100 × �:H<%':�′$ $%5�856% 87�'5�%':��:H<%':�′$ 5�765�7  

where UB is the cost of the best solution found across the whole experimental study for the 
problem instance. 

The algorithms were coded in C++ and the target machine was Scientific Linux (64-bit) on Intel 
Xeon (2.26 GHz), 24 GB RAM. 
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Below, we first present the results from the Hybrid OG&T algorithm, presented in Section 5 for 
the JSO(n,p) problem with total flow time minimization. Then, we report the results from the 
memetic algorithms introduced in Section 7, for the JSO(n,p) problem with makespan 
minimization. 

The complete results can be shown in the Appendix. 

8.1. Hybrid OG&T algorithm for total flow time 

minimization 

The Hybrid OG&T algorithm was used as decoding method in the genetic algorithm presented 
in [Mencía et al. 2011]. In this case, the objective function considered is total flow time 
minimization. 

The impossibility of performing all combinations that exist among the configuration parameters 
of the genetic algorithm has led to the determination of using the following configuration, which 
provides good results for the problem: 

• Crossover probability: 0.7 
• Mutation probability:  0.2 
• Number of runs: 30 
• Selection type: Tournament 
• Crossover type: JOX 
• Mutation type:  Simple1. 
• Fitness type: OG&T - TOTAL FLOW TIME 
• Population size: 100 
• Number of generations: 120 

For evaluating the effect of the Hybrid OG&T algorithm in the performance of the genetic 
algorithm we considered 5 different values for the parameter delta: 0, 0.25, 0.5, 0.75 and 1.  

Table 1 reports, for each value of delta, the error in percentage of both the best and the average 
solutions reached, averaged for instances with the same number of jobs and machines. Overall, 
the best value for delta is 0.75. Also, the effectiveness of the algorithm decreases as delta gets 
smaller. 

 
Delta = 0,00 Delta = 0,25 Delta = 0,50 Delta = 0,75 Delta = 1,00 

Instances 
size 

E.Best 
(%) 

E.Avg 
(%) 

E.Best 
(%) 

E.Avg 
(%) 

E.Best 
(%) 

E.Avg 
(%) 

E.Best 
(%) 

E.Avg 
(%) 

E.Best 
(%) 

E.Avg 
(%) 

10x10 16.73 18.58 10.49 12.36 4.24 6.89 0.74 3.73 0.53 4.63 

20x5 19.18 24.4 8.93 14.14 4.54 9.72 1.59 7.14 0.53 6.66 

15x10 7.53 9.81 4.84 7.71 2.84 5.86 1.11 4.39 0.80 4.92 

15x15 5.29 6.58 1.95 3.97 1.08 3.29 0.52 3.19 1.47 4.38 

20x10 6.89 9.00 4.61 6.97 2.38 5.24 0.79 4.03 0.82 4.73 

20x15 2.55 4.15 1.50 3.43 0.88 3.01 0.45 3.09 1.80 4.62 

Avg. 9.70 12.09 5.39 8.10 2.66 5.67 0.87 4.26 0.99 4.99 

Table 1. Results from the genetic algorithm using the Hybrid OG&T with different values of delta. 
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Figures 28-33 shows the error in average for each instances size and value for delta. 

 

Figure 28. Average error (%) comparison 

between the different delta values (20x5). 

 

Figure 29. Average error (%) comparison 

between the different delta values (10x10). 

 

Figure 30. Average error (%) comparison 

between the different delta values (15x10). 

 

Figure 31. Average error (%) comparison 

between the different delta values (20x10). 

 

Figure 32. Average error (%) comparison 

between the different delta values (15x15). 

 

Figure 33. Average error (%) comparison 

between the different delta values (20x15). 
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As we can see, as long as the problem instances get larger, a smaller value of delta, which 
achieves more reduction of the search space, is the best option.  

• For  small instances of size 20x5, the genetic algorithm reaches the best results with a 
delta value of 1, and we can see that the lower the delta is the worse the results the GA 
reaches are. 

• Regarding instances of sizes 10x10, 15x10 and 20x10, it reaches the best results with a 
delta value of 0.75, then with 1, and after that with 0.5, 0.25, and 0. 

• Then, for  instances of size 15x15, it reaches the best results with a delta of 0.75, but 
then it gets the next best results with deltas of 0.5 and 0.25, and then with 1 and 0. 

• Finally, for the largest instances of size 20x15, we reach the best results with a delta of 
0.5, then 0.75, 0.25, 0, and finally, it gets the worst results with a delta of 1. 

This is quite reasonable, as for small instances, a large reduction of the search space may lose 
good solutions and may make the genetic algorithm to converge prematurely. At the same time, 
for large instances, a large search space may be hard to explore, so reducing it seems to be 
worthwhile. 

Another interesting result we can observe from this experimentation is referred to the stability of 
the algorithm depending on the value of delta. As we can see in Figure 34, which shows the 
Pearson’s variation coefficient averaged for instances with the same size, the lower delta the more 
stable the algorithm. 

 

Figure 34. VC (%) comparison between the different values of delta. 

Finally, regarding the computation time taken, we have not observed significant differences 
among the different values of delta considered. 
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8.2. Memetic algorithms for makespan minimization 

This part of the experimental study is intended to evaluate the memetic algorithms (MAs) using 
each of the four neighborhood structures proposed in this project and compare them with the 
genetic algorithm (GA). 

We first present some results about the computation time required by each local search method 
and then we compare the MAs with the GA giving them the same computation time. 

8.2.1. Evaluation of the Neighborhood Structures 

A very important characteristic of a memetic algorithm is how much computation time takes the 
genetic algorithm part of the MA and how much time takes the local search. 

Figure 35 shows how much time takes in proportion each part in average across the 140 
instances considered in the experimental study. In these experiments, the local search was issued 
from each individual of a population with size 200 along a number of 300 generations. 

 

Figure 35. Weights of the GA and the local search in each MA. 

It can be observed that there are only slightly differences among MA-N 1
1, MA-N 1

2 and 
MA-N 1

3. Firstly, MA-N 1
1 is the algorithm where the local search takes the least time (66%) 

among the four memetic algorithms. Then MA-N 1
3 followed by MA-N 1

2, with 70% and 75% of 
the time respectively. 

Finally, in MA-N 1
O the local search takes the largest time (82%). This was expected as the 

neighborhood structure N1
O is defined as the union of the other three, so it produces the largest 

number of neighbors. 
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8.2.2. Comparison among GA and the different MAs 

With the aim of assessing the effectiveness of the methods proposed in this project for the 
JSO(n,p) problem with makespan minimization, we made several experiments with the GA and 
the four MAs.  The parameters of the genetic algorithm are similar than those used in the section 
devoted to the Hybrid OG&T algorithm, but in this case we only performed 10 runs for each 
instance and method as the available time was scarce. 

• Crossover probability: 0.7 
• Mutation probability:  0.2 
• Number of runs: 10 
• Selection type: Tournament 
• Crossover type: JOX 
• Mutation type:  Simple1. 
• Fitness type: OG&T - Makespan 

We have also considered two variants for each memetic algorithm with respect to the portion of 
chromosomes from which a local search is issued. Firstly, we applied local search to all the 
population, and second, we have given each individual a probability of 0.2 of yielding a local 
search from it. 

In all the experiments, we have given every algorithm a population size of 100 chromosomes 
and set a time limit of 60 seconds. So, each algorithm will perform a different number of 
generations depending on how much time it takes it to compute a generation.  

8.2.2.1. MAs applying local search to all the population 

Table 2 shows the error in percentage of both the best and the average solutions reached, 
averaged for instances with the same number of jobs and machines from GA and the four MAs. 
These results are also represented graphically in Figures 36 and 37.  

 
GA MA-N 1

O MA-N 1
1 MA-N 1

2 MA-N 1
3 

Instance 
size 

E.Best 
(%) 

E.Avg 
(%) 

E.Best 
(%) 

E.Avg 
(%) 

E.Best 
(%) 

E.Avg 
(%) 

E.Best 
(%) 

E.Avg 
(%) 

E.Best 
(%) 

E.Avg 
(%) 

20x15 1,22 1,96 0,78 1,5 0,56 1,34 0,62 1,43 0,79 1,49 

10x10 0,8 2,19 0,64 1,7 0,29 1,53 0,59 1,74 0,45 1,74 

20x5 0,99 1,76 0,23 0,8 0,2 1,02 0,52 1,23 0,38 1,26 

15x10 1,06 1,7 0,57 1,2 0,43 1,17 0,47 1,25 0,57 1,27 

20x10 0,87 1,4 0,41 0,9 0,39 0,9 0,45 1,08 0,58 1,07 

15x15 1,55 2,57 0,74 1,8 0,71 1,73 0,77 1,79 0,68 1,7 
Table 2. Results from GA and MAs averaged for instances with the same size. 
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Figure 36. Avg. Error of the best solution reached for GA and MAs (instances with the same size) 

 

 

Figure 37. Avg. Error of the average solution reached for GA and MAs (instances with the same size) 

 

We can observe that the GA achieves the worst results, for both the best and the average 
solutions returned, in all the subsets of instances with the same size. Regarding the memetic 
algorithms, it seems that it is MA-N11 which reaches the best results in almost all cases. 
MA-N12, MA-N13 and MA-N1O show a less stable behavior, so it is difficult to determine which 
of them is the best. 

For reaching more solid conclusions, following [García et al. 2009] we have made a Friedman 
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establishing a ranking among the methods w.r.t. the average error reached. Table 3 shows the 
average ranking: 

Algorithm Ranking 

MA-N11 2.47 

GA 3.00 

MA-N12 3.15 

MA-N13 3.16 

MA-N1O 3.22 

Table 3. Average ranking. 

The Friedman test produced a p-value of 2.99E-4, and the Iman and Davenport test returned a 
p-value of 2.61E-4. So, there are significant differences among the methods in the ranking. 

We computed a poshoc analysis, concluding that Bergmann’s procedure rejects the following 
hypotheses with a high level of confidence (α = 0.05): 

• MA-N11 vs GA 
• MA-N11 vs MA-N12 
• MA-N11 vs MA-N13 
• MA-N11 vs MA-N1O 

So, there is strong statistical evidence that MA-N11 outperforms all the other methods. At the 
same time, there are no significant differences among GA, MA-N12, MA-N13  and MA-N1O, 
although the average values reported in Table 2 are smaller for the memetic algorithms than for 
GA. The rejected hypotheses are the same with α = 0.10. 

Figures 38-43 show for each group of instances with the same size, the error in percentage of the 
average cost of the solutions, averaged for instances with the same number of operators available. 
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Figure 38. Comparison between the average solution of the considered algorithms (20x5). 

 

 

Figure 39. Comparison between the average solution of the considered algorithms (10x10). 
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Figure 40. Comparison between the average solution of the considered algorithms (15x10). 

 

 

Figure 41. Comparison between the average solution of the considered algorithms (20x10). 
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Figure 42. Comparison between the average solution of the considered algorithms (15x15). 

 

Regarding large instances with sizes 15x10, 20x10, 15x15 and 20x15, the results of the 
algorithms w.r.t. the number of available operators show a different trend than for the small 
instances. When there are few operators available all the methods easily reach the best known 
solution. On the other hand, for intermediate values of the number of operators, the GA 
outperforms the memetic algorithms, and when there are many available operators, the memetic 
algorithms return the best results, especially MA-N11 and MA-N1O. 

 

 

Figure 43. Comparison between the average solution of the considered algorithms (20x15). 
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From this results, it seems that the local search methods proposed in this project are only worth 
using within a memetic algorithm for a large number of operators available. We have conducted 
some experiments not reported in this document, giving the algorithms the same number of 
evaluations (population size = 200 and number of generations = 300). The results show a quite 
similar trend, which indicates that the local search makes the memetic algorithms converge 
prematurely when there is an intermediate number of operators. 

 

8.2.2.2. MAs applying local search with a probability of 0,2 

Motivated by the reasons presented above, we conducted a last series of experiments limiting 
the number of local searches issued during the search. The development of this part of the 
experimental study followed the same steps as in the previous section. 

Table 4 shows the error in percentage of both the best and the average solutions reached, 
averaged for instances with the same number of jobs and machines from GA and the four MAs. 
These results are also represented graphically in Figures 44 and 45.  

 
GA MA-N 1

O MA-N 1
1 MA-N 1

2 MA-N 1
3 

Instance 
size 

E.Best 
(%) 

E.Avg 
(%) 

E.Best 
(%) 

E.Avg 
(%) 

E.Best 
(%) 

E.Avg 
(%) 

E.Best 
(%) 

E.Avg 
(%) 

E.Best 
(%) 

E.Avg 
(%) 

20x5 0,99 1,76 0,28 0,9 0,48 1,12 0,1 0,84 0,27 1,16 

10x10 0,8 2,19 0,22 1,4 0,29 1,34 0,3 1,54 0,24 1,5 

15x10 1,06 1,7 0,22 1 0,27 0,99 0,27 0,99 0,34 1 

20x10 0,87 1,4 0,37 0,8 0,13 0,76 0,3 0,82 0,28 0,79 

15x15 1,55 2,57 0,56 1,5 0,58 1,47 0,46 1,52 0,35 1,4 

20x15 1,22 1,96 0,35 1,1 0,38 1,07 0,27 1,05 0,37 1,16 
Table 4. Results from GA and MAs averaged for instances with the same size. 

 

 

Figure 44. Avg. Error of the best solution reached for GA and MAs (instances with the same size) 
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Figure 45. Avg. Error of the average solution reached for GA and MAs (instances with the same size) 

 

In this case the results are fairly similar than before. The GA achieves the worst results in all the 
subsets of instances with the same size. However, the memetic algorithms reach better solutions 
than those applying the local search to all the population, and there seem to be less differences 
between their results. 
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MA-N1O 3.25 
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Table 5. Average ranking. 

The Friedman test produced a p-value of 1.65E-10, and the Iman and Davenport test returned a 
p-value of 3.72E-11. So, there are significant differences among the methods in the ranking (they 
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In this case, Bergmann’s procedure rejects the following hypotheses with a high level of 
confidence (α = 0.05): 

• MA-N11 vs GA 
• MA-N11 vs MA-N12 
• MA-N11 vs MA-N1O 
• MA-N12 vs GA 
• MA-N13 vs GA 
• MA-N13 vs MA-N1O 

Therefore, there is strong statistical evidence that MA-N11 outperforms all the other methods 
but MA-N13. Also, MA-N12 outperforms GA and MA-N13 is better than both GA and 
MA-N1O.  

With α = 0.10, Bergmann’s procedure rejects the hypotheses: 

• MA-N13 vs MA-N12 
• MA-N1O vs GA 

So, with less confidence we can conclude that MA-N13 also outperforms MA-N12, and that 
MA-N1O is better than GA. 

Figures 46-51 show for each group of instances with the same size, the error in percentage of the 
average cost of the solutions, averaged for instances with the same number of operators available. 

 

 

Figure 46. Comparison between the average solution of the considered algorithms (20x5). 
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Figure 47. Comparison between the average solution of the considered algorithms (10x10). 

 

For small instances, with up to 100 operations, we can observe that the memetic algorithms 
achieve best results than with applying the local search method to all the population. In this case, 
GA never outperforms any of the MAs. 

 

 

Figure 48. Comparison between the average solution of the considered algorithms (15x10). 
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Figure 49. Comparison between the average solution of the considered algorithms (20x10). 

 

For the large instances with sizes 15x10, 20x10, 15x15 and 20x15, the GA is always worse than 
the MAs, with the exception of the instances with few available operators, for which it obtains the 
same results. As we can see, the memetic algorithms limiting the number of local searches by 
introducing a probability of 0.2 of being issued do not show the trend shown in the previous 
section. Also, there seem to be less differences among the MAs.  

 

 

Figure 50. Comparison between the average solution of the considered algorithms (15x15). 
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Figure 51. Comparison between the average solution of the considered algorithms (20x15). 

 

Finally, we made a Wilcoxon paired test for comparing MA-N11 issuing a local search from all 
the chromosomes in the population (MA-N11-ALL)  and MA-N11 issuing a local search from 
each chromosome with a probability of 0.2 (MA-N11-0.2). The alternative hypothesis is that the 
average error reached by MA-N11-0.2 is less than that reached by MA-N11-ALL. This 
hypothesis is supported with a p-value of 1.94E-08 by the Wilcoxon test. 

So, one important conclusion from these experiments is that it is worthwhile limiting the 
number of local searches performed along the search. 
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9. Conclusions and future work 

9.1. Conclusions 

In this master project we have followed two separate lines of work. 

On the one hand,  

• We introduced a strategy to improve the OG&T schedule generation scheme used as 
decoding algorithm in the genetic algorithm for the JSO(n, p) problem with total flow 
time minimization. This strategy is intended to reduce the search space. 

• The new algorithm, termed Hybrid OG&T, was tested across a large number of 
instances with different sizes, improving the quality of the solutions reached by the 
simple OG&T algorithm. 

• The results supported our expectations:  the larger the instance is, the more it is 
worthwhile to reduce the search space. 

On the other hand, 

• We defined 4 neighborhood structures, termed ���, ��J, ��K and ��] for the JSO(n, p) 
problem with makespan minimization. 

• We used these neighborhood structures in a local search method that was combined 
with the genetic algorithm, defining 4 memetic algorithms MA-N11, MA-N12, 
MA-N13 and MA-N1O. 

• We tested the memetic algorithms issuing a local search from each individual and 
compared them with the genetic algorithm.  

• Although the results from the memetic algorithms were better in average than those 
from the genetic algorithm, we found out that they reached worse results than the GA 
for an intermediate number of operators, because of a premature convergence due to the 
lack of a proper intensification/diversification tradeoff. 

• In order to gain diversification, we tested the algorithms again but this time using local 
search only with a probability of 0.2 for each individual. 

• In this case, we have observed that the memetic algorithms clearly outperform the 
genetic algorithm for any number of available operators, being MA-N11 the best one. 

9.2. Future work 

As future work we propose to make a thorough experimental study aimed to analyze some 
issues as the reasons for which premature convergence is produced in some kind of instances. 
Also, we propose to do some refinements in the neighborhood structures and study the possibility 
of extending other neighborhoods from the classic job shop problem. Finally, we will try to define 
new structures based on the properties of the problem derived from the operators.  
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Appendix: Detailed results 

In this appendix we first report, for each instance, the cost of the best solution found along the 
whole experimental study, both for makespan than for total flow time. Then, we give the results 
presented in this project in a more detailed way. 

Instance Makespan TFT Instance Makespan TFT Instance Makespan TFT 

ABZ7_10op 756 13489 FT10_2op 2555 15992 LA27_4op 2708 40681 

ABZ7_11op 709 12767 FT10_3op 1703 11768 LA27_5op 2168 33178 

ABZ7_12op 699 12365 FT10_4op 1296 9646 LA27_6op 1809 28472 

ABZ7_13op 695 12224 FT10_5op 1063 8663 LA27_7op 1554 25624 

ABZ7_14op 693 12198 FT10_6op 972 7993 LA27_8op 1378 23292 

ABZ7_15op 693 12142 FT10_7op 945 7693 LA27_9op 1289 22206 

ABZ7_1op 7366 102947 FT10_8op 936 7638 LA29_10op 1209 20513 

ABZ7_2op 3683 58069 FT10_9op 930 7602 LA29_1op 9929 130308 

ABZ7_3op 2456 39228 FT20_1op 5109 52044 LA29_2op 4965 68862 

ABZ7_4op 1842 29832 FT20_2op 2555 30268 LA29_3op 3310 46958 

ABZ7_5op 1474 24175 FT20_3op 1703 20568 LA29_4op 2483 36320 

ABZ7_6op 1229 20207 FT20_4op 1322 16947 LA29_5op 1987 29348 

ABZ7_7op 1056 17596 FT20_5op 1174 15621 LA29_6op 1659 24869 

ABZ7_8op 925 15722 LA21_10op 1060 13344 LA29_7op 1431 22974 

ABZ7_9op 828 14525 LA21_1op 7994 75875 LA29_8op 1279 21573 

ABZ8_10op 777 13855 LA21_2op 3997 40044 LA29_9op 1225 20591 

ABZ8_11op 729 13110 LA21_3op 2665 27286 LA38_10op 1257 16675 

ABZ8_12op 720 12753 LA21_4op 1999 20918 LA38_11op 1256 16286 

ABZ8_13op 703 12663 LA21_5op 1600 17871 LA38_12op 1248 16317 

ABZ8_14op 708 12635 LA21_6op 1339 15828 LA38_13op 1236 16210 

ABZ8_15op 706 12558 LA21_7op 1168 14535 LA38_14op 1233 16280 

ABZ8_1op 7586 112151 LA21_8op 1084 13666 LA38_15op 1237 16288 

ABZ8_2op 3793 59214 LA21_9op 1068 13335 LA38_1op 11217 113432 

ABZ8_3op 2529 39864 LA24_10op 956 12574 LA38_2op 5609 61936 

ABZ8_4op 1897 29847 LA24_1op 7727 76318 LA38_3op 3739 42050 

ABZ8_5op 1518 24128 LA24_2op 3864 37752 LA38_4op 2805 32716 

ABZ8_6op 1265 20673 LA24_3op 2576 26141 LA38_5op 2245 26490 

ABZ8_7op 1087 18012 LA24_4op 1932 20422 LA38_6op 1874 22967 

ABZ8_8op 953 16198 LA24_5op 1546 17341 LA38_7op 1618 20346 

ABZ8_9op 852 14877 LA24_6op 1292 15495 LA38_8op 1441 18715 

ABZ9_10op 773 13576 LA24_7op 1113 14294 LA38_9op 1325 17468 

ABZ9_11op 745 12818 LA24_8op 999 13330 LA40_10op 1263 17021 

ABZ9_12op 739 12348 LA24_9op 969 12859 LA40_11op 1252 16676 

ABZ9_13op 730 12415 LA25_10op 989 12498 LA40_12op 1251 16544 

ABZ9_14op 731 12429 LA25_1op 7509 69872 LA40_13op 1252 16528 

ABZ9_15op 726 12374 LA25_2op 3755 37166 LA40_14op 1245 16385 

ABZ9_1op 7442 109159 LA25_3op 2503 25202 LA40_15op 1237 16513 
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ABZ9_2op 3721 58654 LA25_4op 1878 20003 LA40_1op 11472 124588 

ABZ9_3op 2481 39352 LA25_5op 1503 16559 LA40_2op 5736 64636 

ABZ9_4op 1861 29449 LA25_6op 1255 14555 LA40_3op 3824 43660 

ABZ9_5op 1489 24254 LA25_7op 1085 13611 LA40_4op 2868 33156 

ABZ9_6op 1242 20426 LA25_8op 1006 12976 LA40_5op 2295 27166 

ABZ9_7op 1066 17848 LA25_9op 989 12570 LA40_6op 1915 23673 

ABZ9_8op 937 15856 LA27_10op 1272 21479 LA40_7op 1651 20986 

ABZ9_9op 843 14583 LA27_1op 10832 149848 LA40_8op 1456 19352 

FT10_10op 930 7638 LA27_2op 5416 79093 LA40_9op 1330 17886 

FT10_1op 5109 28366 LA27_3op 3611 53000 
   

Table 6. Cost of the best known solution (makespan and total flow time).
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Delta = 0 Delta = 0,25 Delta = 0,5 Delta = 0,75 Delta = 1 

Instances 
size 

E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) 

t (s) E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) 

t (s) E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) 

t 
(s) 

E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) 

t (s) E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) 

t (s) 

10x10 16,73 18,58 0,77 1,41 10,49 12,36 1,02 1,34 4,24 6,89 1,26 1,5 0,7 3,7 1,57 1,33 0,53 4,6 2,13 1,33 

15x10 7,53 9,81 1,01 3,2 4,84 7,71 1,17 3,3 2,84 5,86 1,31 3,2 1,1 4,4 1,54 3,01 0,8 4,9 1,74 2,97 

15x15 5,29 6,58 0,59 5,19 1,95 3,97 0,88 5,61 1,08 3,29 1,04 5,2 0,5 3,2 1,14 5,52 1,47 4,4 1,28 5,1 

20x5 19,18 24,4 2,1 1,33 8,93 14,14 2,38 1,36 4,54 9,72 2,45 1,4 1,6 7,1 2,67 1,31 0,53 6,7 2,89 1,33 

20x10 6,89 9 0,85 4,76 4,61 6,97 1,05 4,85 2,38 5,24 1,18 4,6 0,8 4 1,39 4,71 0,82 4,7 1,73 4,53 

20x15 2,55 4,15 0,73 9,93 1,5 3,43 0,84 10,01 0,88 3,01 0,96 10 0,5 3,1 1,17 9,74 1,8 4,6 1,26 9,94 

Table 7. Comparison between values for the delta parameter. 

 

 GA MA-N 1
O MA-N 1

1 MA-N 1
2 MA-N 1

3 

Instances 
size 

E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) 

t (s) E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) 

t (s) E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) 

t (s) E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) 

t (s) E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) 

t (s) 

20x15 1,22 1,96 0,41 60,1 0,78 1,51 0,45 60 0,56 1,34 0,43 60,02 0,62 1,43 0,47 60 0,79 1,49 0,43 60 

10x10 0,80 2,19 0,73 60,11 0,64 1,73 0,69 60 0,29 1,53 0,64 60,01 0,59 1,74 0,67 60 0,45 1,74 0,74 60 

20x5 0,99 1,76 0,53 60,1 0,23 0,75 0,43 60 0,20 1,02 0,52 60,01 0,52 1,23 0,48 60 0,38 1,26 0,52 60 

15x10 1,06 1,70 0,4 60,1 0,57 1,21 0,42 60 0,43 1,17 0,49 60,01 0,47 1,25 0,45 60 0,57 1,27 0,42 60 

20x10 0,87 1,40 0,3 60,1 0,41 0,94 0,36 60 0,39 0,90 0,31 60,01 0,45 1,08 0,4 60 0,58 1,07 0,36 60 

15x15 1,55 2,57 0,58 60,1 0,74 1,79 0,6 60 0,71 1,73 0,65 60,01 0,77 1,79 0,62 60 0,68 1,70 0,61 60 

Table 8. Comparison between the MAs and the GA with the same computation time. 
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20x15 GA MA-N1
O MA-N 1

1 MA-N 1
2 MA-N 1

3 

# op E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) 

t (s) E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) 

t (s) E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) 

t (s) E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) 

t (s) E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) 

t (s) 

1 0,00 0,00 0,00 60,11 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 

2 0,00 0,00 0,00 60,10 0,00 0,00 0,00 60,03 0,00 0,00 0,00 60,02 0,00 0,00 0,00 60,03 0,00 0,00 0,00 60,02 

3 0,00 0,00 0,00 60,10 0,00 0,00 0,01 60,03 0,00 0,01 0,01 60,02 0,00 0,00 0,01 60,02 0,00 0,00 0,01 60,01 

4 0,00 0,00 0,01 60,10 0,02 0,10 0,05 60,02 0,07 0,11 0,03 60,01 0,07 0,10 0,03 60,03 0,05 0,11 0,03 60,01 

5 0,00 0,02 0,03 60,10 0,20 0,30 0,05 60,04 0,18 0,27 0,05 60,01 0,13 0,27 0,07 60,03 0,18 0,28 0,05 60,02 

6 0,00 0,10 0,06 60,10 0,45 0,56 0,08 60,03 0,35 0,45 0,08 60,02 0,43 0,56 0,08 60,03 0,40 0,51 0,06 60,02 

7 0,00 0,07 0,06 60,10 0,56 0,76 0,12 60,02 0,47 0,61 0,10 60,02 0,56 0,74 0,11 60,03 0,56 0,73 0,09 60,02 

8 0,07 0,28 0,15 60,10 0,82 1,07 0,17 60,04 0,64 0,84 0,16 60,02 0,82 1,02 0,21 60,02 0,75 0,95 0,18 60,02 

9 0,28 0,49 0,28 60,10 0,67 1,00 0,38 60,02 0,79 0,92 0,30 60,02 0,83 1,09 0,31 60,02 0,91 1,08 0,24 60,02 

10 0,99 1,43 0,63 60,10 1,47 1,69 0,67 60,03 1,00 1,37 0,63 60,02 1,25 1,45 0,53 60,02 1,34 1,35 0,50 60,02 

11 2,61 3,48 0,98 60,10 1,71 2,36 0,80 60,03 0,74 1,82 0,84 60,02 1,48 2,31 1,03 60,02 1,14 2,23 0,91 60,02 

12 1,99 4,00 1,08 60,10 0,97 2,63 1,23 60,02 0,69 2,42 1,03 60,02 0,62 2,59 1,25 60,01 1,35 2,93 1,15 60,02 

13 4,14 6,08 0,87 60,10 1,50 3,30 1,14 60,02 0,61 3,18 1,13 60,02 1,29 3,21 1,04 60,02 1,50 3,69 1,36 60,02 

14 3,95 4,95 0,99 60,10 0,90 2,45 1,07 60,03 1,03 2,38 1,08 60,01 0,85 2,48 1,15 60,02 2,06 2,63 0,87 60,02 

15 4,20 4,99 1,02 60,12 2,44 3,07 0,93 60,02 1,76 2,40 0,95 60,02 0,94 2,29 1,28 60,01 1,65 2,44 0,95 60,02 

Table 9. Comparison between the MAs and the GA with the same computation time (20x15). 
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10x10 GA MA-N1
O MA-N 1

1 MA-N 1
2 MA-N 1

3 

# op E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) t (s) E. Best 

(%) 
E. Avg 

(%) 
VC 
(%) t (s) E. Best 

(%) 
E. Avg 

(%) 
VC 
(%) t (s) E. Best 

(%) 
E. Avg 

(%) 
VC 
(%) t (s) E. Best 

(%) 
E. Avg 

(%) 
VC 
(%) t (s) 

1 0,00 0,00 0,00 60,13 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 

2 0,00 0,00 0,00 60,13 0,00 0,00 0,00 60,02 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 

3 0,00 0,00 0,00 60,13 0,00 0,05 0,02 60,01 0,00 0,02 0,03 60,01 0,00 0,04 0,03 60,01 0,00 0,04 0,03 60,01 

4 0,08 0,43 0,27 60,10 0,39 0,47 0,13 60,01 0,23 0,39 0,11 60,01 0,15 0,43 0,16 60,01 0,31 0,34 0,09 60,01 

5 0,94 1,99 0,98 60,10 0,19 1,95 0,87 60,01 1,13 2,21 0,62 60,01 0,75 2,24 0,95 60,01 1,03 2,11 0,92 60,01 

6 1,34 2,23 0,95 60,10 1,75 2,29 1,09 60,01 0,82 1,72 1,31 60,01 1,65 2,35 1,06 60,01 1,03 2,34 1,29 60,01 

7 1,80 4,05 1,25 60,10 0,32 1,48 0,98 60,02 0,21 1,99 0,81 60,01 0,74 2,12 1,11 60,02 0,53 2,64 1,30 60,01 

8 0,21 2,99 1,42 60,09 1,07 2,90 1,24 60,01 0,00 2,68 1,24 60,01 0,96 3,38 1,15 60,01 0,11 2,93 1,32 60,01 

9 2,47 4,86 0,96 60,10 1,51 3,63 1,24 60,01 0,00 2,82 1,05 60,01 0,86 2,84 1,10 60,01 0,86 2,96 1,09 60,01 

10 1,18 3,47 1,44 60,12 1,18 2,67 1,30 60,01 0,54 1,59 1,27 60,01 0,75 2,17 1,20 60,01 0,65 2,14 1,40 60,01 

Table 10. Comparison between the MAs and the GA with the same computation time (10x10). 

 
 

20x5 GA MA-N1
O MA-N 1

1 MA-N 1
2 MA-N 1

3 

# op E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) 

t (s) E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) 

t (s) E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) 

t (s) E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) 

t (s) E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) 

t (s) 

1 0,00 0,00 0,00 60,10 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 

2 0,00 0,00 0,00 60,10 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 

3 0,00 0,18 0,17 60,10 0,00 0,07 0,14 60,01 0,00 0,29 0,21 60,01 0,06 0,35 0,18 60,01 0,00 0,28 0,27 60,01 

4 1,13 2,67 1,51 60,10 0,83 0,77 0,56 60,01 0,98 1,03 0,52 60,01 1,59 2,46 1,14 60,02 1,21 1,74 0,83 60,01 

5 3,83 5,12 0,95 60,10 0,34 2,09 1,45 60,01 0,00 2,92 1,88 60,01 0,94 2,51 1,10 60,01 0,68 3,44 1,52 60,01 

Table 11. Comparison between the MAs and the GA with the same computation time (20x5). 
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15x10 GA MA-N1
O MA-N 1

1 MA-N 1
2 MA-N 1

3 

# op E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) t (s) E. Best 

(%) 
E. Avg 

(%) 
VC 
(%) t (s) E. Best 

(%) 
E. Avg 

(%) 
VC 
(%) t (s) E. Best 

(%) 
E. Avg 

(%) 
VC 
(%) t (s) E. Best 

(%) 
E. Avg 

(%) 
VC 
(%) t (s) 

1 0,00 0,00 0,00 60,10 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 

2 0,00 0,00 0,00 60,10 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,02 0,00 0,00 0,00 60,01 

3 0,00 0,00 0,00 60,10 0,00 0,02 0,02 60,02 0,00 0,02 0,02 60,01 0,00 0,02 0,02 60,02 0,00 0,03 0,02 60,01 

4 0,00 0,01 0,02 60,11 0,07 0,18 0,06 60,02 0,07 0,16 0,05 60,01 0,09 0,18 0,07 60,01 0,07 0,19 0,08 60,01 

5 0,04 0,13 0,10 60,11 0,30 0,50 0,12 60,02 0,30 0,43 0,11 60,02 0,34 0,47 0,10 60,01 0,28 0,50 0,14 60,01 

6 0,26 0,43 0,27 60,11 0,80 0,83 0,18 60,01 0,56 0,63 0,21 60,02 0,59 0,79 0,28 60,01 0,52 0,67 0,20 60,01 

7 1,36 1,72 0,49 60,10 0,89 1,22 0,45 60,02 0,46 1,05 0,62 60,01 1,12 1,43 0,45 60,02 1,18 1,45 0,52 60,02 

8 2,79 3,71 1,00 60,11 1,46 2,09 0,79 60,01 1,04 2,32 1,16 60,02 1,38 2,40 1,10 60,02 1,49 2,38 0,93 60,01 

9 2,95 4,18 0,92 60,10 1,25 2,49 1,16 60,01 0,86 2,41 1,41 60,01 1,12 2,63 0,94 60,02 1,71 3,12 1,02 60,02 

10 3,23 5,04 1,23 60,10 0,88 3,01 1,42 60,01 1,04 2,91 1,36 60,01 0,06 2,76 1,53 60,01 0,42 2,63 1,25 60,01 

Table 12. Comparison between the MAs and the GA with the same computation time (15x10). 

20x10 GA MA-N1
O MA-N 1

1 MA-N 1
2 MA-N 1

3 

# op 
E. Best 

(%) 
E. Avg 

(%) 
VC 
(%) t (s) 

E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) t (s) 

E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) t (s) 

E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) t (s) 

E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) t (s) 

1 0,00 0,00 0,00 60,10 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,02 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 

2 0,00 0,00 0,00 60,10 0,00 0,00 0,00 60,02 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 

3 0,00 0,00 0,00 60,09 0,00 0,02 0,02 60,02 0,00 0,01 0,02 60,02 0,00 0,02 0,02 60,01 0,00 0,03 0,01 60,01 

4 0,00 0,02 0,02 60,10 0,11 0,17 0,03 60,02 0,06 0,15 0,06 60,01 0,10 0,18 0,05 60,02 0,10 0,18 0,05 60,01 

5 0,03 0,06 0,05 60,10 0,24 0,35 0,10 60,02 0,19 0,35 0,10 60,01 0,24 0,36 0,10 60,02 0,17 0,36 0,11 60,01 

6 0,00 0,24 0,11 60,10 0,52 0,79 0,14 60,02 0,25 0,57 0,18 60,02 0,46 0,72 0,11 60,02 0,43 0,61 0,10 60,01 

7 0,40 0,64 0,29 60,10 0,73 0,90 0,27 60,02 0,49 0,59 0,22 60,01 0,70 0,70 0,19 60,01 0,66 0,74 0,29 60,01 

8 1,95 2,36 0,62 60,10 0,72 1,29 0,75 60,02 0,85 1,25 0,76 60,01 0,64 1,80 1,02 60,01 1,20 1,82 0,83 60,01 

9 3,00 3,24 0,97 60,10 1,23 1,52 1,34 60,02 1,31 1,87 0,97 60,01 1,19 2,11 1,16 60,02 1,60 2,08 1,23 60,01 

10 3,38 5,16 0,96 60,10 0,55 2,07 0,97 60,01 0,74 1,90 0,81 60,01 1,18 2,67 1,31 60,01 1,64 2,60 0,94 60,01 

Table 13. Comparison between the MAs and the GA with the same computation time (20x10). 
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15x15 GA MA-N1
O MA-N 1

1 MA-N 1
2 MA-N 1

3 

# op 
E. Best 

(%) 
E. Avg 

(%) 
VC 
(%) t (s) 

E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) t (s) 

E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) t (s) 

E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) t (s) 

E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) t (s) 

1 0,00 0,00 0,00 60,12 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 

2 0,00 0,00 0,00 60,10 0,00 0,00 0,00 60,02 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,02 0,00 0,00 0,00 60,01 

3 0,00 0,02 0,01 60,10 0,01 0,05 0,02 60,01 0,01 0,05 0,02 60,02 0,00 0,04 0,02 60,02 0,01 0,06 0,03 60,01 

4 0,00 0,02 0,02 60,10 0,14 0,22 0,06 60,02 0,19 0,29 0,06 60,01 0,12 0,23 0,07 60,03 0,16 0,24 0,05 60,01 

5 0,00 0,06 0,03 60,10 0,53 0,63 0,07 60,03 0,40 0,55 0,11 60,01 0,40 0,60 0,11 60,02 0,44 0,60 0,08 60,01 

6 0,03 0,17 0,12 60,10 0,77 1,01 0,17 60,02 0,48 0,87 0,19 60,01 0,79 0,93 0,12 60,01 0,69 0,97 0,17 60,02 

7 0,00 0,36 0,30 60,10 1,01 1,43 0,25 60,03 0,80 1,14 0,24 60,02 0,98 1,28 0,20 60,02 0,98 1,21 0,19 60,02 

8 0,90 0,64 0,36 60,11 1,07 1,07 0,51 60,02 0,97 0,69 0,35 60,02 1,62 1,18 0,31 60,02 1,52 1,05 0,28 60,02 

9 1,32 2,52 0,92 60,09 0,90 1,85 0,76 60,01 1,43 1,48 0,78 60,01 1,20 1,63 0,55 60,02 0,79 1,32 0,64 60,02 

10 2,98 4,84 1,19 60,11 0,87 3,07 1,27 60,01 0,80 2,65 1,27 60,02 2,26 3,81 1,21 60,02 1,55 3,41 1,55 60,01 

11 3,67 5,18 1,05 60,10 1,16 2,96 1,02 60,03 0,12 2,64 1,45 60,01 0,84 2,98 1,16 60,02 0,68 2,98 1,18 60,01 

12 3,12 5,19 1,28 60,10 0,00 2,65 1,32 60,02 1,04 3,26 1,62 60,02 1,16 2,85 1,11 60,01 0,28 2,37 1,62 60,01 

13 2,94 5,62 1,37 60,10 1,77 3,27 1,08 60,01 1,01 3,26 1,26 60,02 0,28 2,35 1,36 60,01 0,08 2,71 1,10 60,02 

14 3,92 5,53 1,05 60,11 1,38 2,79 1,17 60,02 1,21 2,76 1,30 60,01 0,53 2,97 1,63 60,01 1,62 2,87 0,99 60,02 

15 4,37 6,14 0,93 60,11 1,46 3,58 1,32 60,01 2,14 4,11 1,03 60,01 1,33 3,72 1,48 60,01 1,46 3,48 1,25 60,01 

Table 14. Comparison between the MAs and the GA with the same computation time (15x15). 
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 GA MA-N 1
O MA-N 1

1 MA-N 1
2 MA-N 1

3 

Instances 
size 

E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) t (s) E. Best 

(%) 
E. Avg 

(%) 
VC 
(%) t (s) E. Best 

(%) 
E. Avg 

(%) 
VC 
(%) t (s) E. Best 

(%) 
E. Avg 

(%) 
VC 
(%) t (s) E. Best 

(%) 
E. Avg 

(%) 
VC 
(%) t (s) 

20x15 1,22 1,96 0,41 60,1 0,35 1,10 3,6 60 0,38 1,07 3,33 60 0,27 1,05 3,53 60,01 0,37 1,16 3,34 60 

10x10 0,80 2,19 0,73 60,11 0,22 1,36 6,79 60 0,29 1,34 6,41 60 0,30 1,54 7,72 60,01 0,24 1,50 7,43 60 

20x5 0,99 1,76 0,53 60,1 0,28 0,91 6,35 60 0,48 1,12 5,03 60 0,10 0,84 6,5 60,01 0,27 1,16 7,49 60 

15x10 1,06 1,70 0,4 60,1 0,22 1,02 5,23 60 0,27 0,99 4,7 60 0,27 0,99 4,29 60,01 0,34 1,00 4,44 60 

20x10 0,87 1,40 0,3 60,1 0,37 0,80 3,94 60 0,13 0,76 4,69 60 0,30 0,82 4,78 60,01 0,28 0,79 4,79 60 

15x15 1,55 2,57 0,58 60,1 0,56 1,54 7,4 60 0,58 1,47 7,55 60 0,46 1,52 8,85 60,01 0,35 1,40 8,5 60 

Table 15. Comparison between the MAs and the GA with the same computation time and 20% Local Search. 

 

20x15 GA MA-N 1
O MA-N 1

1 MA-N 1
2 MA-N 1

3 

# op E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) 

t (s) E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) 

t (s) E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) 

t (s) E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) 

t (s) E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) 

t (s) 

1 0,00 0,00 0,00 60,11 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 

2 0,00 0,00 0,00 60,10 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 

3 0,00 0,00 0,00 60,10 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 

4 0,00 0,00 0,01 60,10 0,00 0,01 0,40 60,02 0,00 0,00 0,00 60,01 0,00 0,01 0,39 60,01 0,00 0,01 0,23 60,01 

5 0,00 0,02 0,03 60,10 0,02 0,09 0,66 60,01 0,00 0,04 0,48 60,01 0,00 0,07 0,68 60,01 0,00 0,05 0,45 60,01 

6 0,00 0,10 0,06 60,10 0,11 0,20 0,83 60,02 0,05 0,13 0,73 60,01 0,11 0,18 0,76 60,02 0,05 0,15 0,77 60,01 

7 0,00 0,07 0,06 60,10 0,12 0,26 0,88 60,01 0,03 0,17 1,11 60,01 0,03 0,22 1,17 60,02 0,12 0,24 0,78 60,02 

8 0,07 0,35 0,15 60,10 0,28 0,52 1,62 60,02 0,18 0,37 1,17 60,02 0,28 0,51 1,28 60,01 0,14 0,46 1,47 60,02 

9 0,28 0,77 0,28 60,10 0,28 0,62 2,22 60,02 0,00 0,52 3,22 60,01 0,20 0,66 2,59 60,02 0,28 0,56 1,49 60,02 

10 0,99 2,14 0,63 60,10 0,56 1,54 5,24 60,02 0,44 1,19 4,11 60,01 0,47 1,28 3,97 60,01 0,22 1,28 4,24 60,02 

11 2,61 4,20 0,98 60,10 0,37 2,24 8,52 60,01 0,68 2,43 9,01 60,02 0,90 2,59 7,04 60,01 0,96 2,58 7,71 60,02 

12 1,99 4,15 1,08 60,10 0,32 2,33 8,86 60,02 0,83 2,73 8,47 60,02 0,73 2,33 8,02 60,01 0,75 2,55 8,18 60,01 

13 4,14 6,08 0,87 60,10 1,38 3,54 9,23 60,01 1,47 3,30 8,08 60,02 1,04 3,20 9,00 60,01 1,22 3,60 8,42 60,01 
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14 3,95 5,65 0,99 60,10 0,95 2,51 8,02 60,01 0,71 2,25 6,90 60,01 0,19 2,20 9,64 60,02 0,51 2,98 8,69 60,02 

15 4,20 5,83 1,02 60,12 0,84 2,70 7,54 60,02 1,36 2,90 6,70 60,02 0,10 2,42 8,36 60,01 1,27 2,94 7,64 60,01 

Table 16. Comparison between the MAs and the GA with the same computation time and 20% Local Search (20x15). 

10x10 GA MA-N 1
O MA-N 1

1 MA-N 1
2 MA-N 1

3 

# op E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) 

t (s) E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) 

t (s) E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) 

t (s) E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) 

t (s) E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) 

t (s) 

1 0,00 0,00 0,00 60,13 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 

2 0,00 0,00 0,00 60,13 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 

3 0,00 0,00 0,00 60,13 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,02 0,00 0,01 0,30 60,01 0,00 0,01 0,30 60,01 

4 0,08 0,51 0,27 60,10 0,15 0,32 0,83 60,01 0,23 0,34 0,92 60,01 0,00 0,25 1,54 60,01 0,00 0,25 1,72 60,01 

5 0,94 2,18 0,98 60,10 0,19 1,19 7,99 60,01 0,38 1,37 7,90 60,01 0,00 1,36 8,50 60,01 0,47 1,81 10,06 60,01 

6 1,34 3,08 0,95 60,10 0,31 1,99 10,51 60,02 0,62 1,98 9,35 60,01 0,93 2,05 8,55 60,01 0,00 2,38 11,81 60,01 

7 1,80 4,28 1,25 60,10 0,00 2,72 14,44 60,02 0,00 1,95 11,54 60,01 1,06 2,96 15,48 60,01 0,85 2,43 9,56 60,01 

8 0,21 2,99 1,42 60,09 0,11 2,72 11,53 60,01 0,11 2,10 10,55 60,01 0,21 2,13 11,76 60,01 0,32 2,90 12,57 60,01 

9 2,47 4,86 0,96 60,10 0,65 2,13 11,17 60,01 0,86 2,82 11,77 60,01 0,00 3,59 16,92 60,01 0,75 3,06 13,12 60,01 

10 1,18 4,02 1,44 60,12 0,75 2,49 11,45 60,01 0,75 2,80 12,12 60,01 0,75 3,10 14,14 60,01 0,00 2,16 15,18 60,01 

Table 17. Comparison between the MAs and the GA with the same computation time and 20% Local Search (10x10). 

20x5 GA MA-N 1
O MA-N 1

1 MA-N 1
2 MA-N 1

3 

# op E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) 

t (s) E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) 

t (s) E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) 

t (s) E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) 

t (s) E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) 

t (s) 

1 0,00 0,00 0,00 60,10 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 

2 0,00 0,00 0,00 60,10 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 

3 0,00 0,18 0,17 60,10 0,00 0,32 3,44 60,01 0,00 0,19 3,43 60,01 0,00 0,13 3,25 60,01 0,00 0,11 3,11 60,01 

4 1,13 3,52 1,51 60,10 1,06 1,93 11,95 60,02 1,06 2,73 12,34 60,01 0,00 1,52 16,16 60,01 0,83 2,27 11,30 60,01 

5 3,83 5,12 0,95 60,10 0,34 2,30 16,38 60,01 1,36 2,70 9,40 60,01 0,51 2,54 13,10 60,01 0,51 3,40 23,03 60,01 

Table 18. Comparison between the MAs and the GA with the same computation time and 20% Local Search (20x5). 
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15x10 GA MA-N 1
O MA-N 1

1 MA-N 1
2 MA-N 1

3 

# op E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) t (s) E. Best 

(%) 
E. Avg 

(%) 
VC 
(%) t (s) E. Best 

(%) 
E. Avg 

(%) 
VC 
(%) t (s) E. Best 

(%) 
E. Avg 

(%) 
VC 
(%) t (s) E. Best 

(%) 
E. Avg 

(%) 
VC 
(%) t (s) 

1 0,00 0,00 0,00 60,10 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 

2 0,00 0,00 0,00 60,10 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 

3 0,00 0,00 0,00 60,10 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,20 60,01 

4 0,00 0,01 0,02 60,11 0,00 0,05 0,67 60,01 0,00 0,01 0,29 60,01 0,00 0,03 0,56 60,01 0,00 0,02 0,41 60,01 

5 0,04 0,17 0,10 60,11 0,04 0,18 1,31 60,01 0,00 0,12 1,42 60,01 0,04 0,16 1,35 60,01 0,04 0,13 0,99 60,01 

6 0,26 0,69 0,27 60,11 0,08 0,40 2,49 60,01 0,03 0,27 2,02 60,01 0,05 0,39 2,57 60,01 0,13 0,33 1,76 60,01 

7 1,36 2,19 0,49 60,10 0,18 0,92 5,43 60,01 0,18 0,71 4,24 60,01 0,15 0,93 6,09 60,01 0,33 0,89 4,18 60,01 

8 2,79 4,40 1,00 60,11 0,31 2,64 13,80 60,01 1,25 2,90 11,59 60,01 0,94 2,92 9,80 60,01 1,38 2,80 11,61 60,01 

9 2,95 4,52 0,92 60,10 0,82 2,89 13,10 60,01 0,34 2,91 14,92 60,01 0,45 2,51 11,54 60,01 0,69 2,88 12,90 60,01 

10 3,23 5,04 1,23 60,10 0,77 3,11 15,49 60,01 0,93 2,96 12,53 60,01 1,12 2,91 10,97 60,01 0,84 2,97 12,40 60,02 

Table 19. Comparison between the MAs and the GA with the same computation time and 20% Local Search (15x10). 

20x10 GA MA-N 1
O MA-N 1

1 MA-N 1
2 MA-N 1

3 

# op 
E. Best 

(%) 
E. Avg 

(%) 
VC 
(%) t (s) 

E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) t (s) 

E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) t (s) 

E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) t (s) 

E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) t (s) 

1 0,00 0,00 0,00 60,10 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 

2 0,00 0,00 0,00 60,10 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,02 0,00 0,00 0,00 60,01 

3 0,00 0,00 0,00 60,09 0,00 0,00 0,15 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 

4 0,00 0,02 0,02 60,10 0,02 0,05 0,62 60,01 0,00 0,03 0,69 60,01 0,00 0,02 0,45 60,02 0,00 0,03 0,50 60,01 

5 0,03 0,09 0,05 60,10 0,05 0,12 1,30 60,01 0,00 0,10 1,01 60,01 0,05 0,11 1,07 60,01 0,00 0,07 1,07 60,01 

6 0,00 0,24 0,11 60,10 0,15 0,29 1,85 60,01 0,03 0,22 1,85 60,01 0,06 0,27 2,17 60,01 0,03 0,23 1,97 60,01 

7 0,40 0,97 0,29 60,10 0,23 0,61 4,12 60,01 0,23 0,52 2,86 60,01 0,19 0,48 2,77 60,01 0,07 0,51 3,73 60,01 

8 1,95 2,95 0,62 60,10 0,63 1,51 7,10 60,01 0,04 1,24 9,80 60,01 0,51 1,59 11,40 60,01 0,95 1,57 7,85 60,01 

9 3,00 4,43 0,97 60,10 1,17 2,41 11,76 60,02 0,16 2,85 18,03 60,01 1,32 2,99 17,14 60,01 0,78 2,48 13,97 60,01 

10 3,38 5,32 0,96 60,10 1,42 2,98 12,52 60,01 0,82 2,67 12,70 60,01 0,91 2,76 12,79 60,01 0,97 3,01 18,84 60,01 

Table 20. Comparison between the MAs and the GA with the same computation time and 20% Local Search (20x10). 
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15x15 GA MA-N 1
O MA-N 1

1 MA-N 1
2 MA-N 1

3 

# op E. Best 
(%) 

E. Avg 
(%) 

VC 
(%) t (s) E. Best 

(%) 
E. Avg 

(%) 
VC 
(%) t (s) E. Best 

(%) 
E. Avg 

(%) 
VC 
(%) t (s) E. Best 

(%) 
E. Avg 

(%) 
VC 
(%) t (s) E. Best 

(%) 
E. Avg 

(%) 
VC 
(%) t (s) 

1 0,00 0,00 0,00 60,12 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 

2 0,00 0,00 0,00 60,10 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 0,00 0,00 0,00 60,01 

3 0,00 0,02 0,01 60,10 0,00 0,02 0,43 60,01 0,00 0,02 0,47 60,01 0,00 0,01 0,43 60,01 0,00 0,01 0,43 60,01 

4 0,00 0,02 0,02 60,10 0,04 0,08 0,98 60,01 0,00 0,04 0,62 60,01 0,02 0,07 1,30 60,01 0,02 0,04 0,49 60,01 

5 0,00 0,06 0,03 60,10 0,11 0,23 1,75 60,01 0,07 0,13 0,85 60,02 0,07 0,20 2,01 60,01 0,02 0,12 1,45 60,01 

6 0,03 0,20 0,12 60,10 0,11 0,35 2,41 60,01 0,16 0,28 1,63 60,01 0,05 0,36 2,72 60,01 0,11 0,31 2,15 60,01 

7 0,00 0,36 0,30 60,10 0,12 0,47 2,79 60,01 0,03 0,30 3,32 60,01 0,09 0,45 3,19 60,01 0,03 0,28 2,69 60,01 

8 0,90 1,48 0,36 60,11 0,41 0,93 5,35 60,01 0,10 0,64 5,22 60,01 0,14 0,80 6,84 60,02 0,00 0,85 6,39 60,01 

9 1,32 3,10 0,92 60,09 0,38 1,56 9,15 60,01 0,00 1,13 11,72 60,01 0,45 1,39 9,51 60,01 0,11 1,54 12,43 60,01 

10 2,98 5,05 1,19 60,11 1,79 3,42 12,16 60,01 1,11 2,84 14,91 60,01 1,03 2,90 14,48 60,01 0,79 3,17 21,26 60,01 

11 3,67 5,30 1,05 60,10 0,48 2,43 12,95 60,01 1,16 2,31 10,06 60,01 0,80 2,72 15,95 60,01 0,68 2,64 15,26 60,01 

12 3,12 5,19 1,28 60,10 0,40 2,19 15,31 60,01 1,28 3,17 11,81 60,01 1,00 2,94 17,64 60,01 0,80 2,80 17,61 60,01 

13 2,94 5,62 1,37 60,10 1,53 3,37 12,52 60,01 1,73 3,60 18,77 60,01 0,12 3,00 21,30 60,01 0,36 2,50 16,53 60,01 

14 3,92 6,04 1,05 60,11 1,46 4,20 16,95 60,01 1,37 3,76 17,11 60,02 1,33 4,22 16,39 60,01 1,50 3,57 15,55 60,01 

15 4,37 6,14 0,93 60,11 1,54 3,86 18,19 60,01 1,66 3,85 16,74 60,01 1,74 3,80 21,01 60,01 0,77 3,15 15,30 60,01 

Table 21. Comparison between the MAs and the GA with the same computation time and 20% Local Search (15x15). 

 

 


