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M-estimates of location
for the robust central tendency of fuzzy data

Beatriz Sinova, Mar’la@\ngeles Gil and Stefan Van Aelst

Abstract—The Aumann-type mean has been shown to possess A well-known measure of the location of the distribution of
valuable properties as a measure of the location or central 3 random fuzzy number is its Aumann-type mean (Puri and
tendency of fuzzy data associated with a random experiment. Ralescu [1]), which satisfies that
However, concerning robustness its behaviour is not apprajate. '
The Aumann-type mean is highly affected by slight changes ithe
fuzzy data or when outliers arise in the sample. Robust estiators
of location, on the other hand, avoid such adverse effects.oF
this purpose, this paper considers the M-estimation approeh
and discusses conditions under which this alternative yids
valid fuzzy-valued M-estimators. The resulting M-estimabrs are
applied to a real-life example. Finally, some simulation sidies
show empirically the suitability of the introduced estimators.

- it is well-defined under quite general conditions,

- it extends the mean value of a real-valued random vari-
able,

- it preserves the main valuable properties of the real-
valued mean (it is a ‘linear’ operator - i.e., it is equivaitia
under fuzzy arithmetic-based linear transformations-, it
fulfils Fréchet's principle w.r.t. most of th&? metrics
between fuzzy numbers, and it is coherent with the usual
fuzzy arithmetic).

Index Terms—fuzzy number-valued data, M-estimators, ran-
dom fuzzy numbers, robust location of fuzzy data.

|. INTRODUCTION However, the Aumann-type mean also inherits from the mean

N the current information age, new types of data emerge a real-valued random variable its high sensitivity tdeit

and we have to face the new challenging problems assagie existence of outliers or small changes in the data. When
ated with the analysis of these data. Among these new typesking for a more robust location measure, it seems conve-
of data, fuzzy number-valued outcomes are more and merient to follow successful approaches that were developed f
used in real-life applications to model data from intriadiig  other types of data. In this respect, this paper focuses @n th
imprecise attributes. well-known M-estimation approach.

When analyzing fuzzy data from a statistical viewpoint, the 1 adapt the M-estimation approach to the case where the

interest is often focused on the location (central tendencyailable data are fuzzy number-valued, two methodologies
of the random mechanism that generated the data. Mign pe considered, namely:

concretely, fuzzy data can be assumed to be measurements ] . ) )
of a random fuzzy number (fuzzy random variable in Puri and * BY USing a suitable.” metric, fuzzy data can be repre-
Ralescu’s sense [1]) and the statistical analysis may conce sented as functional data resulting from (a convex cone

the location of the distribution of this fuzzy number-vadue
random element.
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within) certain Hilbert space-valued random elements
(see, for instance, Gonzalez-Rodriguetz al. [2] and
Sinovaet al. [3]). Consequently, we may adopt existing
results and methods from Functional Data Analysis (more
specifically, Kim and Scott’s ideas and results [4], [5]) to
the fuzzy case. This approach is valid whenever one can
guarantee that the resulting measure cannot move out of
the cone of the fuzzy data.

Ad hocfuzzy-valued M-estimators can be developed by
using particular metrics based on specific representations
of fuzzy numbers. For these representations there should
exist sets of necessary and sufficient conditions which
guarantee that the representation corresponds to a fuzzy
number. Twoad hocM-estimators have been introduced
in Sinovaet al. [6], [7] by using convenienf.! metrics
between fuzzy data. The corresponding fuzzy-valued M-
estimators are quite easy to compute since their level
sets can be expressed in terms of medians of real-
valued random variables. It has also been shown that
they preserve valuable properties of the median of a real-
valued random variable, such as its robustness and strong
consistency.
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This paper aims to approach the problem by using M- To perform statistics with fuzzy data, one of the key tools is
estimators which have been proposed in the area of Funttiog&en by the arithmetic to operate with these data. Most ef th
Data Analysis. Some recent proposals in the context of tobtiseoretical and practical studies with fuzzy data constter
nonparametric density estimation connect ideas from 4radisual and natural approach corresponding to Zadeh’s eatens
tional kernel density estimation with standard M-estimati principle, which in this case extends level-wise the usual
These proposals can be adapted to Hilbert space-valued raterval arithmetic.

dom elemgnts and they can be shown to yield valid esnmat%%finition 2. LetD.V e F (R). Thesum of 7 and 7 is
when restricted to random fuzzy numbers. <

The relevant concepts about fuzzy number-valued data aq]%{med as the fuzzy numbir+ V' € 7(R) given for each

random fuzzy numbers, i.e. one-dimensional random fuz%/E [0,1] by

sets are recalled in Section Il. In Section Il M-estimatofs (U + V)4 = Minkowski sum of/,, and V,
location for random fuzzy numbers are formally introduced.
Necessary and sufficient conditions guaranteeing thes- exi

tence, as well as their expression as a weighted mean of ¢t {7 ¢ F(R) andy € R. Theproduct of U by the scalar

the fuzzy-valued sample data are provided. This feature j§s defined as the fuzzy numberl € F*(R) given for each
crucial for fuzzy data to guarantee that the corresponding I < [0,1] by

estimators are fuzzy-valued under the considered conditio . - )
Properties of the M-estimators are examined in detail. The -~ ~ { [v-inf Uq, vy -supUs] if v >0

= [inf Uy + inf Vy, sup Ua + sup ‘7&]

weighted mean expression for M-estimators allows us to X’ U)o =7 Va =

tend the iteratively re-weighted least squares algoriteedun
classical M-estimation for the computation of sample lmeat A pistances between fuzzy data
M-estimates for fuzzy data, as is illustrated by means of an_ . 5 . . .
example. Although the conditions for the existence of the M- .It IS V\_/eI.I—known .that when..FC. (R) is endowgd with this
estimators cover the extension of several important ccialssi"’mthmetIC |tdeterm|ne§asem|—llqear bUI not a linear epa_s ,
M-estimators, some recently proposetihocM-estimators do a consequence from this fad_mere Is no ‘difference oper:_;mon
not satisfy these conditions. We recall these proposaks foer between these va_lues that IS smultanepusly well-defined an
reasons of comparison. The use of fuzzy-valued M-estirsatdy oo V> the main properties of the difference betwedn rea
of location is illustrated by means of a real-life example. values in con_necuon with the_sum.

Section IV presents the results of several simulation sgidi Moreover, it shoqld be pointed out th"’?t’ although fuzzy
that have been carried out to empirically compare the rebugf‘mberS are formahzed ai@,_l]-valued functlons, one car_mot
ness behavior of the location M-estimators introduced is th' €2t fuzzy data directly as If they were functional datahia t

paper to thead hocproposals. Some concluding remarks aray they are usually handled in Functional Data Analysis.
gathered in Section V. This is due to to the fact that the functional arithmetic on

Fi(R) can yield elements that lie outside this space and thus
Il. Fuzzy DATA AND RANDOM FUZZY NUMBERS the meaning of fuzzy data is lost.
Fuzzy data appear in several domains. They are mainly! N€S€ concerns have been substantially overcome by devel-

used to describe imprecise human assessments such as,raffRjnd statistical methods for imprecise data based onldaita
opinions, judgments or perceptions in a natural and easy_ggstances between fuzzy numbers. On one hand, distances

handle way. In particular, when conducting quality rating@/low to ‘translate’ the equality of fuzzy numbers into the

satisfaction valuations and many other surveys, it cannoftdistance between these values being equal to 0. On the other

not be expected that responses are expressed as fixed valg8¢, appropriate distances also allow us to ‘identify'zjuz

in a precise scale, since they are essentially imprecisee(se set-valued da_ta with functl_onal data through their soechll

De la Rosa de Saet al. [8] for a recent detailed discussionSUPPOrt function (see, for instance, [2]). Distances betwe

about this point). fuzzy data have received allot of attention in the .I|teratur.e
Fuzzy number-valued data can be interpreted as a ‘evéfey have often been considered in connection with studies

wise’ extension of interval-valued data, where the levelga Of Similarity between fuzzy numbers, as well as for statati

certain gradualness to the imprecision of interval-valdath, Purposes such as classification of fuzzy data or inferential
Formally, they are defined as follows: statistics with fuzzy number-valued random elements.

o o In this paper, a parameterized and versatile family of dis-
Definition I1.1. F7(R) is the space of (bounded) fuzzy numgnces has been chosen, although a few other distances will
bers, that is, the mapping§’ : R — [0,1] such that their occasionally be mentioned. This family of distances hasibee

['y - sup (70“ v - inf I_'Nfa] otherwise.

a-levels introduced by Bertoluzzat al. [9] (see Casalst al. [10] for a
~ {reR: (7(33) > a} if ae(0,1] recent review, and Trutschnif al. [11] for its generalization
Uy = to fuzzy vector-valued data). It is formalized as follows:

Az eR : Uz) > 0} if =0,
Definition 11.3. Let # € (0,+00) and let ¢ be an abso-

are nonempty compact intervalgf.(m)~can be interpreted as lutely continuous probability measure df0, 1], Bjy,1;) with
the ‘degree of compatibility’ of with U’ (or ‘degree of truth’ the mass function being positive d,1). The mid/spr-
of the assertion * is U”). based L? distance is defined as the mappin®; : F(R)
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x F#(R) — [0,+0c0) which associates with each palf, V' B. Random Fuzzy Numbers

of elements fron¥:(R), the value To formalize the statistical analysis of fuzzy data, an esse

o o~ o~ \2 tial tool is the adaptation of a suitable model for the random
Dy (U, V) = /[o . (mld Ua — mid Va) dip(a) mechanism generating fuzzy data. The notion of random fuzzy

’ , 1/2 number in Puri and Ralescu’s sense [18], [1] is a soundly

~ o established and well-supported model within the probsiili

Jr9/[071] (Spr Ua = spr VO‘) dg)(a)] ’ setting. This notion is based on the ideas of Fréchet [16] an

_ _ _ _ Féron [20]. In this model, fuzziness is assumed to affeet th

where midU, = (infU, + supU,)/2 and sprU, nature of values/data and randomness is assumed to afféct th
= (supU, —infU,)/2. generation. Random fuzzy numbers can be defined as follows:

The mid/spr-based metric has been shown to be V&8gfinition I1.4. Let (1, A, P) be a probability space modeling
suitable for the development of statistical methodology fQ, 4nqom experiment. A mapping : & — F*(R) is said
experimental fuzzy set-valued data. For instance, Gezzal;, e arandom fuzzy number associated witch the random
Rodriguezet al. [2] provides a detailed explanation of Meyperiment if, and only if, for each ¢ [0,1] the interval-
apprqach _t(_) ANOVA with fuzzy dz_ata based on the fur)ction@lmued mappingt,, (whereX,(w) = (X(w)) for all w € )
data identification. The recent reviews of BIanco-Eerrmrml is a random compact interval or equivalenofly, the real-wu
al. [12], [13], [14], [15] and Gilet al. [16] summarize MOSt {,nctionsinf X, and sup X,, are random variables.
of these statistical developments.

In these distances, differences in center and shape ane takdt should be highlighted that a random fuzzy number is
into account through the mid and spr functions, respegtivef Borel-measurable mapping with respect to the Berel
The parametef and the measure do not have a stochasticfield associated with several metrics like, for instances th
meaning. The parametér weighs the influence of the ‘de- Mid/spr-based distance (see, for instance, Gonzalezifoey
viation in shape’ between the fuzzy data with respect to tt§éal-[2] and Gilet al.[16]). As a consequence from the Borel-
influence of their ‘deviation in center. Note that the ctemicmeasurability, crucial concepts such asitiauced distribution
9 = 1 corresponds to a generalization of the well-knowff @ random fuzzy numbenr the stochastic independence of

distancep, by Diamond and Kloeden [17], which for anyfandom fuzzy numbexsan be immediately stated.
U,V from F*(R) is given by The best known measure of location of a random fuzzy

number is the Aumann-type mean, which is given by

CTT V) — AP(TT U
Di(U,V)=p3(U.V) Definition 11.5. Let X be a random fuzzy number and assume
that the expected values of the random variakilest;, and
sup Xy are finite. TheAumann-type mean of X is the fuzzy

1 e a2
- [5 /[071] (mf Us — in V‘“) dp(c) numberE(X) € F*(R) such that for eachn € [0, 1]

(E(X)), = [E(inf X,), E(sup Xa)] .

1/2
1 _ N2
3 /[0,1] (SUP Ua —sup V"‘) d(‘p(a)l ' Note that this notion, introduced by Puri and Ralescu [1],

is coherent with the usual fuzzy arithmetic. In particulér,
Another interesting choice is associated with the vélael /3, the possible values of a random fuzzy numBeare given by
since (see Casakt al. [10]) it can be equivalently expressed{Z1,...,Tn} and P(X =7;) = P({w € Q : X(w) = 7;}),
as then it holds that

_ ol 2 E(X)=P(X =&1) 1+ ...+ P(X =) - Tm.
DO V) = [ [ [ (T V) dpt) et B =pE=n) ( )
o1 o That is,

i = 77l (E(X))a
with ¢ = Lebesgue measure o0, 1], Bp,1) and Us
=n-supUy + (1 —n) - inf U, for all n € [0, 1]). o - _ ~

The mid/spr-based distances at@ metrics that, through me(m"')"‘ P = m"')’zsup(xi)“ P& = m"')] '
the support function, allow us to embed the space of fuzzy - =t
numbers into a convex cone of a Hilbert space by a RadstromThe Aumann-type mean of a random fuzzy number is
type isometry. More details can be found in Trutscheig Supported by Strong Laws of Large Numbers (see e.g. Colubi
al. [11] and Gonzalez-Rodriguezt al. [2] (see also Blanco- €t al.[21]) and also by the Fréchet approach [19], since it is
Fernandeet al.[12] and Gilet al.[16] for recent reviews). In the fuzzy number minimizing the ‘mean square error’of
this way, despite the fact that fuzzy data should not bedrka@@bout a fuzzy number. That is,
directly as functional data, they can be treated as funation _ N2
data by considering the identificatioia the support function. E(X)=arg_min E {(DZO(& U)) ]
As one can see later, this identification is crucial for the ver:®)
extension of M-estimators to fuzzy data. for everyd and  for which the expectation exists.
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I1l. L OCATION M-ESTIMATES FROM FUZZY DATA M-estimates of location. These conditions allow us to espre
M-estimation is a well-established approach that yield8€ M-estimates as weighted linear combinations of the &mp
robust estimators. M-estimators were first introduced by Hglements. This feature will be very convenient to assuré tha
ber [22] to estimate the location of real-valued data wita tfhe M-estimates are indeed fuzzy number-valued statistics
aim of limiting the influence of outliers on methods like leas The novel representer theorem that will be stated in Theo-
squares and maximum likelihood. For this purpose, the k&M !lI-A.1is an adaptation of Kim and Scott's work [4], 8]t
idea consists of replacing the square of the ‘errors’ with e fuzzy-valued case by means of the isometrical embedding
(usually less rapidly increasing) loss function appliedtte mentioned before. It expresses the sample Ipcatlon M-a_mm_]
errors of the data. In this respect, M-estimators were pitese for fuzzy number-valued data as a convex linear combination

as intermediaries between the sample mean and median. Of the sample components;, ..., z,.
In this section, the notion of M-estimators is extended ® thrheorem 111-A.1. ConsiderF*(R) endowed with the metric
case of fuzzy number-valued data. Sufficient conditionshen tp?. LetX, = (#1,...,%,) be a sample of independent

loss function to guarantee that the M-estimation processsle gpservations from a random fuzzy numter Q — F:(R) on
to well-defined (|.e., fUZZy'VaIUed) estimates are estakll. a probabmty SpvaQ,A, P) Moreover’ |etp be a continuous

Following Huber's ideas [22], [23], a location M-estimatgoss function which satisfies the assumptions
in connection with a random fuzzy number is formalized as « p is non-decreasing for positive values(0) = 0 and

follows: limg o p(x)/m =0,

Definition 1Il.1. Let (2, A, P) be a probability space and « Let ¢(z) = p'(z)/z and ¢(0) = lim, o ¢(z), and

X : Q — F*(R) an associated random fuzzy number. More- ~ assume thap(0) exists and it is finite.

over, letp be an arbitrary continuous real-valued functionThen, the sample M-estimate of location exists and it can be
(which will be referred to hereinafter as thess function, expressed as

and (Xi,...,X,) a simple random sample front. Then, T .

the sample fuzzy M-estimator of location is the fuzzy number 9" %] = Z;wi S

valued statisticgM (X1, ..., X,)], given b
cM(x ) 9 y with w; > 0 and 3.7, w; = 1. Furthermore,

; p(DE (X, 7)), w; o< $(Df (&, G [Zn)).

Many loss functionsp that are used to compute M-
estimators satisfy the above-mentioned conditions. Ortheof
The p-function in Definition Ill.1 generalizes the squarednost well-known loss functions which fulfills the required
loss function in the least squares approach. Actually, isis- conditions is theHuber loss functiorj23], which is given by
ally assumed to vanish at 0 and to be even, and nondecreasing 9 .
" x?/2 if 2] <a
for positive values.
It is very common in practice to fix a bounded referential pale) = ’
. : . —a/2) otherwise,
in R, as is the case for the fuzzy rating scale by Hesketh a|z| —a/
et al. [37]. When adopting this situation and working oiith a > 0 a tuning parameter. Note that the Huber loss func-
mathcal F.([q,7]), for certaing,» € R such thatg < r, it tion is convex, but not strictly convex. Huber’s loss fuoati
is possible to prove that the M-estimator of location is Borgields a hybrid approach between squared and absolute error
measurable and, therefore, a statistic. losses. Indeed, it corresponds to a parabola in the vicadify
. i . and increases linearly from the given lewebnwards, so that
Proposition lll.1. Let((, A, P’) be a Polish probability space g can put appropriate emphasis on large and small errors.
and X : Q — Fe([g.r]) (for certain ¢.r € R such that gqme giscussions on the choice of the tuning paranaeten
g < r) an associated random fuzzy number. Moreover, Isl9 found in e.g. Wangt al. [25] and Debruyneet al. [26].

(1,..., &) be a simple random sample froif and p @ Apgther well-known loss function is theampel loss func-
continuous loss function. Then, the M-estimator of locat® tion [27], which corresponds to

1
GM(X, ..., X)) = min  —
g &, Xn)] = arg_moin

if it exists.

well-defined. .
_ _ _ 2 /2 if0<|z|<a
To show that Definition IIl.1 yields valid estimators for the
location of fuzzy random variables, we have to show that a(lz| — a/2) if a<|z|<b
the estimators are indeed fuzzy-valued statistics. Thianis B
immediate corollary of the following representer theorem. ,, , (z) = a(jz] —¢)?  a(b+c—a)
. 20— 0) 5 if b<l|z|<c
—C
A. Representer theorem for M-estimates with fuzzy data
Kim and Scott [4], [5] recently proposed a robust non- a(b+c—a) if ¢ < |z
parametric density estimator by combining a traditionahké 2 -

density estimator with ideas from standard M-estimation. Avhere the nonnegative parameters< b < ¢ allow us to
interesting contribution of Kim and Scott's work lies in the control the degree of suppression of large errors. The emall
analysis of the conditions to ensure the existence of samfieir values, the higher this degree.
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The performance of M-estimators thus depends on theThe following (artificial) example explains the algorithm
choice on the tuning parameter(s) that appear in both Iasscompute the M-estimates corresponding to the Huber loss
functions. To fix these tuning parameter(s), one can follofunction p, 36 and to the Hampel loss functign ¢ 3.18,3.51

the ideas in Kim and Scott [5], that is, based on thd.? metric Df/g.

1) Choose as starting solution an easily computable ’Ob@ample 1. Consider a samplexs = (F1,72,73)
centrality measure (to ensure the robustness of the | .

! : vith three trapezoidal/triangular fuzzy values given by
estimator unless we can assure that the M-estimator_is Tra(0,2,3,4), T2 = Tri(1,1.5,2) and &3 = Tri(3,4, 5)

unique); . _(displayed in grey in Figure 3).
2) Compute the distances between the fuzzy observationgp,e parameter values are fixed do= 2.36, b = 3.18 and

and this initial solution; ¢ = 3.51. For the Huber loss functiop, 36, the corresponding

3) Seta equal to the median of these real-valued distancgf estimate of location can then be determined by means of
for both loss functions. For Hampel's loss function, sg},q following algorithm:

b andc equal to the75'" and the85*" percentiles of the

obtained distances, respectively. Step 1. Take as initial estlmaijéf’ (k = 1) a ‘central’ value.

) . In this case, we have chosen the 1-norm median (see
An example of the Huber loss function for= 2.36 (used in Subsection 1l1-C) as initial robust location measure.

Example 111.1) is shown in Figure 1. Figure 1 displays theslos Fix a tolerances = 10~ 7.

function py 56, its derivativep; 35 and¢;.3¢ (corresponding to step 2. Update the weights
the quotient ofp}, 5, and the identity function). 0 e
(k) _ ¢(Di/3(xiag(k)))

W, = =n P~
251 0D 5(@5, 90))
and the estimate

- k) o~
Gty = D wi” i
i=1

Step 3. Repeat Step 2 until

TGN 0y) — @)
0‘0 0‘5 1‘0 1‘5 2‘0 2‘5 3‘0 3‘5 J(g(lvk'[) )
Fig. 1. Huber loss functioms. 36, its derivativep), 55 and ¢2.36

<E.

The final estimate is given by the trapezoidal fuzzy number

_ ) Tra(1.33,2.50, 2.83, 3.66), which has been displayed in black
To illustrate the Hampel loss function for the values of thﬁstraight line) in Figure 3.

tuning parameters in Example 111.1 below, Figure 2 displays
the loss functioms 36,3.18,3.51, its derivativep) s 5 15 3.5, and 2
¢2.36,3.18,3.51-

0.8
I

0.6
I

0.2

0.0
I

Y p———— N Fig. 3. A Huber (black line) M-estimate of location of the gaeof the grey
fuzzy data (usinng/B)

o | Analogously, the corresponding M-estimate of location for
3_ the Hampel loss functiorps 36,3.183.51 can be calculated,
3 which in this example is almost indistinguishable from the
o] <] ; solution for the Huber loss function.

I i T T T T j ; T T — B. Properties of M-estimates satisfying the representer
Fig. 2. Hampel loss functiop, ;. (top), its derivativep’ (bottom left) theorem

. . (l,b,C . . . . .
and ¢, 5, (bottom right) witha = 2.36, b = 3.18 andc = 3.51 In this subsection, we state several interesting propertie
of the fuzzy-valued M-estimates when the conditions of the
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representer theorem are satisfied. These properties hdave nés an immediate consequence from the representer theorem
been studied by Kim and Scott in the context of densifipr fuzzy data, one can trivially prove that the M-estimabdés
estimation yet. Proofs can be found as the supplementdn fuzzy numbers sharind. and R functions (see Dubois

material. and Prade [29]) also fall in thé R family. Recall thatU is
In particular, the M-estimates are translation equivdriamsaid to be anLR fuzzy number(b,¢,b —a,d — ¢)rr if
and under additional assumptions also scale (and, hence, b— _
symmetry) equivariant. L <b — a> if z € [a,b)
Proposition [lI-B.1. (Translation equivariance) Consider ~ 1 if x€b,(]
Fi(R) endowed with the metri®;. Letx, = (Z1,...,Z,) Uz) = r—c\
be a sample of independent observations from a random fuzzy R (d — C) if 2 € (c,d]
numberX : Q — FX(R) on a probability spacg(2, A, P). 0 .
: . S otherwise
Moreover, letp be a continuous loss function fulfilling the

assumptions in Theorem IlI-A.1, such that the correspandiwhere a,b,c,d € R, a < b < ¢ < d, and L,R : [0,1]

sample M-estimate of I%aiion is unique. — [0,1] are continuous non-increasing functions such that
LetU € F(R). If gM[%pn + U] is the location M-estimate L(z) = R(y) = 1iff 2 =y =0 and L(z) = R(y) = 0 iff
based onx,, + U, then it holds that r=y=1).
— o Proposition [lI-B.3. Assume the conditions in Theo-
gM[xn + U] = gM[Xa] + U, rem I1I-A.1 are fulfilled. Assume also that, = (Z1,...,%,)
— . ) . _ . is a sample of independent observations such thatrg
whereg/[xy] is the location M-estimate based &R, which a6 1 fuzzy numbers sharing the and R functions. Then,
Sat'ng\ the sample M-estimate of location is @R fuzzy number
i) gM[Xn] = D0 wi - Ty, with the sameL and R functions. In particular, if allz;’'s
i) wi o ¢>(D*"(@,§ﬁ[\]>), are trapezoidal fuzzy numbers, then the sample M-estinfate o
i) S wi = 1. location is trapezoidal as well.

Another interesting property when examining the adequacy
endowed with the metrid?. Let X, = (i1,...,%,) be of the location M-estimates based on fuzzy data as cen-

a sample of independent observatlons from a random fuiE"i‘) tendency measures concerns their behavior in case of
number : Q — F*(R) on a probability spaceg$, A, P). symmetrically distributed samples. In the real-valuedecas

Moreover, letp be a continuous loss function fulfilling theell-known result is that the median of a symmetric random

assumptions in Theorem IlI-A.1, such that the correspapdiff@iiable coincides with the point of symmetry whenever it
sample M-estimate of location is unique. is unique. In the fuzzy-valued case, a similar result can be

If » satisfies the conditiom(k - =) x ¢(z) for every k obtalngd for IAgcatlon~M -estimates under pertaln assumptio
€ (0,00) (i.e., the coefficient of proportionality is independent -6t Xn = (@1,...,7n) be a sample of mdepe*ndent obser-
of ), then for allc € R it holds that vations from a random fuzzy numbéf : Q@ — FF(R) on a

probability spacéf2, A, P). Then, the samplg,, is said to be
Emn] = ¢ gM[Xn], symmetric about € R (see Sinoveet al. [30]) if and only if
Xn — ¢ ande — x,, (or, equivalently2c — x, andxy) include
wheredM[c - %] is the location M-estimate based enx,, exactly the same fuzzy data. We then have the following tesul

and gM[xy] is the location M-estimate based 6, which Proposition I1-B.4. ConsiderF(R) endowed with the met-

Proposition IlI-B.2. (Scale equivariance) ConsideF*(R)

satisfies ric Dy. LetX, = (71,...,%,) be a sample of independent
i) gﬁ{?} =37 w; T observations from a random fuzzy numBeér @ — F(R) on
n i 1/1\21 . .
i) w; o< $(DE (T, 5 [%n])) a probability space(2, A, P). Moreover, letp be a continuous
i) i o1, v ’ loss function fulfilling the assumptions in Theorem III-A.1
=1 Wi =

such that the associate M-estimate is unique. If the sample
For instance, ifp is a power function, then the correspondx,, is symm(iric\about € R, then the corresponding location
ing M-estimate is scale equivariant. M-estimateg [X,,] is a symmetric fuzzy number abaut
Note that the extra condition on the loss function in The- . . I .
orem 11I-B.2 is a strong requirement. Most loss functions fa In addition to these properties, it is also of importance to
M-estimates of location do not satisfy this property. Tlere, investigate the consistency of sample M-estimators as agell

similarly as in the real setting (see e.g. Marorataal. [28]) thz: robustnesst. the al " ¢
the resulting M-estimate, especially its robustness, negedd rong consistency concerns the aimost suré convergence o

heavily on the considered measurement units. To avoid tﬁ%mple M-estimators to their population analogue, given by

drawback, we determine the values of the tuning parameters gM(X)=arg min E [p (D;P(/’\j‘, [7))} i
in the considered loss functions based on the distribution o UeF:(R)

the distances for the particular dataset, as already exq@ai In the literature, consistency has been formally guaran-
after Theorem IlI-A.1. teed under certain conditions (see e.g. Vandermeulen and



IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. , NO. , 7

Scott [31]). However, those results do not include most of pabc( max D (7 f/,)> < n- ZL%J abe(©);

the commonly used loss functions. In order to cover, among P \a<ij<n 0T n— L%J —1 e

others_, the weII-knqwn Huber and Hampel loss funct|c_)ns, e finite sample breakdown point of the corresponding loca-

following theorem is now stated under the assumption that - w1 astimator is exactly: [ 2L,

the referential fuzzy numbers are defined on is bounded, as 2

happens when using the fuzzy rating scale. Notice that Theorem 111-B.3 includes Huber’s loss function

) _ \ which is linear for large values of its argument and thus can b

Theorem IlI-B.1. Consider the metric spad&.((9,7]), D7), ypper and lower bounded by straight lines. This result iagis

with ¢,r € R, g <7 and§ > 0. Let X' : Q& = Fo(lg,7]) D& ot the fshp of both Huber and Hampel M-estimates (therlatte

a random fuzzy number associated with a probability spagg. g icient large choices of the tuning parameters) isaéqu

(2, A, P). Under any of the following assumptions: to 1.[2EL| In contrast, the fsbp of the sample Aumann-type
« p is non-decreasing and subadditive for positive valuemean has been shown to be equal%tc(see e.g. Sinovat

and unbounded, al. [6], [7]). M-estimates thus yield a huge gain in robustness
o p is the Huber loss function (for any tuning parametein comparison to the commonly used Aumann-type mean.
a > 0),

« pis the Hampel loss function (for any tuning parameter&_ Relatedad hocestimators
c>b>a>0), _
and whenever;™ (X) exists and is unique, the sample M- The representer theorem guarantees the existence of sample

estimator of location is a strongly consistent estimator N—gsnmates of location as well as their expression as mando

M (X), i.e weighted means of the sample elements for loss functions

g e that satisfy the needed conditions. While several common
lim D)GM[(Xy,..., X)), 3 (X)) =0 as. [P]. choices of the Iloss fun_ctlop sgtlsfy th_ese condltlong, there
n—00 are also some interesting choices which do not satisfy these

We now investigate the robustness of location M-estimatdf@nditions. In particular, for the choica(x) = |z, which
for fuzzy data by means of thénite sample breakdown yields the median in the real-valued case, one cannot apply

point, for short fsbp (Hampel [32], Donoho and Huber [33])§he results in Section IlI-A. However, Sinowt al. [6], [7]

The fsbp is a measure of robustness that can be adapte@P0Sed median-type M-estimates for random fuzzy numbers

estimators taking values in general metric spaces (Cuet/asThese M-estimates cannot be expressed as weighted means of

al. [34]). It represents the smallest fraction of observatiorld® Sample elements, but level-wise they can be expressed in
in a sample that needs to be perturbed to make the (suitalj"s Of the classical medians of real-valued random viesab
chosen) distance between the M-estimates in the origirl & @racterizing the fuzzy number. This makes the computatio
contaminated samples arbitrarily large of the median-type M-estimators rather easy to accomptish i

The first result shows the importance of the translationgfag_t'ce' In fp<|’:’|tl’thU|aI’, Sinowet al. [6] introduced the 1-norm
equivariance of M-estimators as stated in PropositioBIll- median as Tollows.
Definition Il.2. Let x, = (Z41,...,%Z,) be a sample of

_ H H * ¥
Theorem IlI-B.2. Consider the metric spacer: (R), Dj) independent observations from a random fuzzy numbef)

and ¢ any nonnegative value. Let : Q@ — F*(R) be y -
a random fuzzy number associated with a probability spa@ F¢(R) on a probability space(?, 4, P). The Sa@'ﬂ'

(Q, A, P). Moreover, letp be a continuous loss functionnorm median of X' is defined as the fuzzy numbkle[x,,]
fulfilling the assumptions in Theorem 1lI-A.1, such that the 7. (R) such that for eachv € [0, 1]

corresponding sample M-estimate of location is uniquenThe B o o
the finite sample breakdown point of the corresponding loca- ( e[xn])a = [Me{inf(1)a, ..., inf(Fn)a

tion M-estimator is at most |21 |, where|[-| denotes the _ _
floor function. Me{ sup(Z1)a; - - -, 5Up(Tn o }|

Moreover, it is possible to prove that this upper boungVhere in case the real-valued mediafe is non-unique the
for the finite sample breakdown point is attained under 4Rid-Point convention is considered).
additional sufficient condition on the loss function. The 1-norm median satisfies

n

Theorem |lI-B.3. Consider the metric spaceF; (R), Dy) Me[%p] = arg min 1 Z (p1 (@7(7)) 7
and ¢ any nonnegative value. Let : Q@ — FX(R) be UeFr(R)

a random fuzzy number associated with a probability space -

(Q, A, P). Moreover, letp be a continuous loss functionwhere forl, v

i=1

fulfilling the assumptions in Theorem IlI-A.1, such that the o 1 o~ -
corresponding sample M-estimate of location is unique.d&/nd p1(U,V) =3 /0 ) inf Uy — inf Vo | dov
any of these assumptions . [0.1]
« p has, for positive values, linear upper and lower bounds; +5 / ‘SUP Ua —sup V| da
[0,1]

e papb,c IS @ Hampel's loss function whose tuning parame-
ters satisfy (see Diamond and Kloedda7]).
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In other words, the 1-norm median corresponds to an Nbaaet al. [8], only limited conclusions can be obtained when
estimate associated with the loss functjga) = |z| and the the Likert scale responses are encoded by consecutiveeinteg

L' distancep,. numbers.

Similarly, Sinova et al. [7] have introduced thee-  On the other hand, the fuzzy rating scale has been intro-
wabl/ldev/rdev medianas follows. duced (Hesketret al. [37]) as an approach that allows to
Definition 11l.3. Let X, = (F1,...,3.) be a sample of combine a free-response format with a fuzzy valuation. & th

independent observations from a random fuzzy nuniber fuz_zy rating scale, along a continuous line between two end-
Q — F*(R) on a probability space(Q, A, P). Then the PoINts
sampleg-wabl/Idev/rdev median of X' is defined as the fuzzy o a respondent first selects or draws a ‘representative po-

numberM@[in] € F*(R) such that for eachy € [0, 1] sition/interval’ of the respondent rating (i.e., the set of
— points which she/he considers to be fully compatible with
(M‘P [ﬁn]) = [Me{wabl‘ﬂ (5;"1), e ,Wabl"o (i‘in)} such a rating)’
° « the respondent then also indicates ‘latitudes of accep-
— Me{ldevZ, (@),...,1devf (a)}, tance’ on either side by determining the highest and
Me{wabl“O(fl), o ,wabW(fn)} lowest possible positions for the respondent rating (i.e.,
the set of points which she/he considers to be compatible
+Me{rdev? (a),...,rdev? (a)}} to some extent with such a rating).
(where in case the real-valued mediafe is non-unique the The fuzzy rating scale allows to explore and exploit more
mid_point Convention iS Considered)_ information than the Likel’t-Sca|e. Moreover, fI’0m a Stﬂlﬂi
The p-wabl/ldev/irdev median satisfies perspective the fuzzy rating scale is generally also more
— 1 _ informative than the usual fuzzy linguistic approach (seg e
M¢[x,] = arg _min — Z (%" (2, U)) : Herreraet al. [38], Donget al. [39], Rodriguezet al. [40] for
o ver:® iz some recent contributions to this approach), as shown by De
where forU, V la Rosa de Saat al. [8].
@f(ﬁ ‘7) — |Wab1“°([7) 7wab1“°(‘7)| It can be argued that fuzzy rating scale-based question-
1 naires are not as user-friendly as Likert scales. However,
+—/ |1dev“5(oz) —ldev“‘f/(oz)Idso(a) minor training is usually sufficient to explain non-experts
[0.1] how to respond on a fuzzy rating scale (see Heskeith
+l/ rdev? (@) — rdevE (a)| dp(a), al. [37]). To show how this fuzzy rating scale works by
[0,1] v v means of a simple example, some of the items for the

. o~ ~_ Student questionnaire TIMSS/PIRLS (sktp://timss.bc.edu/
0T Oy ®
with wabl (U) = Jip,y mid Ua dip(e), ldevp (e) =wabl”(U)  imcc5011/downloads/T11_StuQ_4.pdf) have been adapted in
— inf Uy, rdevy (o) = sup Us — wabl?(U). accordance with this scale, and the questionnaire has been
In other words, thep-wabl/ldev/rdev median correspond§°”d”0ted on the fourth grade students of the Colegio San

to an M-estimate associated with the loss funciién) = |z| Ignacio in Oviedo-A;t_urias .(Spain). Note that thg _quesiion
and theL! distanceZy. have not been modified with respect to the original ques-

dionnaire, but only the fuzzy rating scale has been added
as a second way to respond. The students received instruc-
{éons (in Spanish) on how to answer the questions (see
http://carleos.epv.uniovi.es:8080/). We remark that this exam-

ple accurately follows the spirit of Zadeh, who has coined
it as the “precisiation of the imprecise”(see Zadeh [41]).
Surprisingly, no answer has been slightly more frequeni wit

We now consider a real-life example with fuzzy-valued datihe Likert than with the fuzzy rating scale.

and compute the location M-estimates in Subsections llkh a  \ye now analyze data from one of the considered items (a
In-C. different and more detailed analysis of datasets from thelevh

Example 111.2. In 2011, TIMSS (Trends in International@dapted questionnaire can be found in&ial.[42]), referring
Mathematics and Science Study) and PIRLS (Progress tehthe degree of agreement with the statement that studying
International Reading Literacy Study) assessments havedo Mathematics is harder than any other subject. The paper-and
for the first time to assess the fourth grade students R§NCil format corresponding to this question is graphycall
three fundamental curricular areas: mathematics, sciarge displayed in Figure 4.
reading. Data from the 68 fourth grade students from Colegio San
The questionnaires in these studies are in a standard fornhgmacio have been collected. The results are shown in the plo
to be answered in accordance with a 4-point Likert scalen the left in Figure 5. The outputs for the four location M-
namely DISAGREE A LOT, DISAGREE A LITTLE, AGREE A estimates discussed in the previous section are displayed i
LITTLE and AGREE A LOT. As indicated in De la Rosa dethe plot on the right in Figure 5.

Since thesead hocM-estimates have similar properties a
the M-estimates obtained through the representer theavem,
make an empirical comparison in Section IV to investiga
finite-sample differences.

D. An illustrative real-life application



IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. , NO. , 9

IV. EMPIRICAL COMPARATIVE ANALYSIS OF
M-ESTIMATES WITH FUZZY DATA

While it has been shown that the Aumann-type mean is

Mathematics

How much do you agree with these statements about learning mathematics? not robust (Sinovaet al. [6], [7]), the M-estimators do show
MS3. Mathematics is harder for me than any other subject robu;t behgwor in terms of fsbp as discussed in Section Il
Disagree Disagree Agree Agroe In this section we empirically compare the performance and
e n e e o robustness of the fuzzy-valued M-estimators in more ddtail
1. O O O O particular, we consider the M-estimators based on the Huber

and Hampel loss functions using ti# ., and D{ distances,
as well as the 1-norm andwabl/ldev/rdev medians. For each
2. of the estimators, the mean squared error of the estimator is
ot 2 2t s e T s e approximated by simulation in different settings.

Fig. 4. An item about mathematics to fill out in the doublepmsse The general scheme of the simulations is as follows:
questionnaire

STUDY 1 (mid-points of the 1-levels generated from a sym-
metric distribution)

i Based on four real-valued random variables, trapezoidal
2] 2 fuzzy data are generated accordingxo = Tra(X; — Xo
Bl — X3, X7 — X0, X1 + X2, X1 + Xy + X4). Each sample
contains a fractior, of contaminated observations, where
¢p = 0,0.1,0.2, or 0.4.
In the first case (CASE 1) the variabl&s are independent.
In particular,

] , , _ e X; ~ N(0,1) and X5, X3, X4 ~ X3 for the regular
Fig. 5. Sample fuzzy data and location M-estimates of theu@yf rating b .
scale-based responses to Question MS3 observations.
o X, NN(O,3)+CD and/orX27X3,X4 NX421+CD for

It can be seen that Hampel and Huber M-estimates, which e contaminated observations.
are based on thé)f/3 metric and use the 1-norm median a#h the second case (CASE 2) dependence between the vari-
initial solution, coincide. ablesX; is introduced as follows.

It can be easily checked that the conditions for the repre-e X; ~ A(0,1) and Xs, X3, X4 ~ 1/(X?+1)240.1-x2
senter theorem are satisfied for the Huber and Hampel M- for the non-contaminated subsample (wjth indepen-
estimates in this example, whence (as shown in Proposi- dent of X;),
tion 111-B.3) they preserve the trapezoidal shape of theglam o X; ~ N(0,3) + Cp and/orXs, X3, X4 ~ 1/(X? + 1)?
data. + 0.1-x% + Cp for the contaminated subsample (with

This appealing property does not hold for the two median-  y? independent ofX).

type M-estimates, as can be seen from Figure 5. The constantCp, which determines the distance between
On the other hand, differences in the behavior of fiie e gistribution of the regular and contaminated obsevuati

type medians and the M-estimates in Figure 5 are mainly ddgais0, 1,5, 10, or 100. This yields 16 different settings for
to the influence of the corresponding loss functions. In thig; h case.

way, Huber and Hampel loss functions ‘penalize’ less (more)
the small (large) distances than the absolute value. . .

Itis inteEesf(iJng); to comment that after integer encodindnef t STUDY 2 (mid-points of the 1-levels generated from an asym-
Likert-type responses, the medians for item MS3 correspop{'datrIC distribution)
to AGREE A LITTLE (6.6). Hence, as already pointed out by For CASE 3, the trapezoidal fuzzy data are generated
De la Rosa de Saet al. [8], the fuzzy rating scale responsegiccording to X = Tra(X (1), X(2), X(3), X(4)), With X(q)
offer richer nuances and expressiveness. < X(o) < X(3) < X(y) the order statistics ok, Xo, X3, Xy,

) i which are distributed as
In the literature one can find several arguments to employ

triangular or trapezoidal fuzzy numbers or approximations® g(()llj'sX?’Xi"X‘* ~ Beta(5,1) for the regular observa-
preserving exactly or approximately ambiguity, expectadri :

val, etc. (see, for instance, Pedrycz [44], Grzegorzewtsj,[ ° Xi and/orX; and/or X and/orX, ~ Beta(1, Cp + 1)
[46], [47], Grzegorzewski and Pasternak-Winiarska [48nB for the contaminated observations.

et al. [49], Lubiano et al. [50], and others). However, we For CASE 4, trapezoidal fuzzy data are generated as in
emphasize that to compute the location M-estimation offuz TUDY 1, but now.X; are distributed as

responses by means of the approaches in this paper, there & X; ~ Beta(5,1), X5 ~ Uniform[0, min{X;,1 — X3 }],

no need for fuzzy data to be trapezoidal/triangular (see e.g X3 ~ Uniform[0, X; — X5] and X; ~ Uniform[0, 1
Kosinski et al. [43] for some examples of other fuzzy data). — X3 — X, for the regular observations.

T T T T T T T T T T T T
0 2 4 6 8 10 0 2 4 6 8 10
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TABLE |
M-ESTIMATE SHOWING THE LOWEST ESTIMATED MEAN SQUARED ERROR FOTHE SIMULATION DESIGNS INSTUDIES 1AND 2
STUDY 1-CASE 1 STUDY 1 - CASE 2 STUDY 2 - CASE 3 STUDY 2 - CASE4
e [Cp|| P 2 Di,s  p2 |m 9{ Diy  po P 2f D, po p1 21  Di,s  pe
01 O HAMP* HAMP* HAMP* HAMP™ | 1-n 1-n 1-n 1-n HAMP HAMP HAMP HAMP | HAMP HAMP HAMP HAMP
01| 1 HAMP HAMP HAMP HAMP | 1-n 1-n HAMP* 1-n HAMP HAMP HAMP HAMP | HAMP HAMP HAMP HAMP
01| 5 HAMP HAMP HAMP HAMP | 1-n 1-n 1-n 1-n HAMP HAMP HAMP HAMP | HAMP HAMP HAMP HAMP
0.1| 10 HAMP HAMP HAMP HAMP | 1-n 1-n 1-n 1-n HAMP HAMP HAMP HAMP | HAMP 1-n 1-n HAMP
0.1(100|| HAMP _HAMP HAMP HAMP [1-n 1-n HAMP 1-n HAMP HAMP HAMP_ HAMP | HAMP* HAMP* HAMP* HAMP*
02| O HAMP* HAMP* HAMP* HAMP™ | 1-n 1-n 1-n 1-n HAMP HAMP HAMP HAMP | HAMP HAMP* HAMP* HAMP*
02| 1 HAMP* HAMP* HAMP* HAMP* | 1-n HAMP* HAMP* HAMP* || HAMP HAMP HAMP HAMP | HAMP 1-n 1-n HAMP
02| 5 HAMP HAMP HAMP HAMP | 1-n 1-n 1-n 1-n HAMP HAMP HAMP HAMP | HAMP HAMP HAMP HAMP
0.2( 10 HAMP HAMP HAMP HAMP | 1-n 1-n 1-n 1-n HAMP HAMP HAMP HAMP | HAMP* HAMP HAMP* HAMP
0.2| 100 || HAMP HAMP HAMP HAMP | 1-n 1-n 1-n 1-n HAMP HAMP HAMP HAMP | HAMP* HAMP* HAMP* HAMP*
04| O HAMP* willr willr HAMP * | 1-n 1-n 1-n 1-n HAMP HAMP 1-n HAMP | HAMP* HAMP* HAMP* HAMP*
04| 1 HAMP* HAMP* HAMP* HAMP™ | 1-n 1-n 1-n 1-n HAMP HAMP HAMP HAMP | HAMP* HAMP* HAMP* HAMP
04| 5 HAMP* willr wilir willr 1-n 1-n 1-n 1-n HAMP HAMP HAMP HAMP | HAMP wil/r willr HAMP
0.4| 10 || HAMP* HAMP* HAMP* wil/r 1-n 1-n 1-n 1-n HAMP HAMP HAMP HAMP wil/r wilir wil/r HUB
0.4 | 100 || HAMP* HAMP* wil/r willr 1-n 1-n 1-n 1-n HAMP  1-n 1-n  HAMP| w/lir wilir wil/r HUB

e X; ~Beta(l,Cp + 1) and/orX, ~ min{X;,1 — X;}- symmetric distribution, whereas there is a high diversdy f
Beta(1,Cp+1) and/orXs ~ (X;—X»)-Beta(1,Cp+1) asymmetrically distributed mid-points.

and/or)_(4 ~ (1 - Xy *.XQ) - Beta(1,Cp +1) for the Remark IV.1. In addition to the empirical advantages of the
contaminated observations. . ) . :
) ) M-estimators based on Hampel's loss function, it should be
The same values af, andCp as in STUDY 1 are considered.pignlighted that thanks to the representer theorem, the M-
For each of the four cases above, the simulation study Waimates of important classes of fuzzy data such as trajszo
performed according to the following steps. data are guaranteed to give a location estimate that betongs
Step 1. To determine the population analog of the M-estimatdéke same class. This is because the estimates are expgessibl
for each caselN = 1000 samples of sizex = 10000, as weighted averages. This result is not generally truedor
consisting of only regular fuzzy-number observationsocrobust measures, which complicates their interpretation a
(cp = Cp = 0) have been generated. The populatiomeasure of the location of the fuzzy data.
target for each M-estimator is then taken as the Monte
Carlo average of the corresponding M-estimates in V. CONCLUDING REMARKS

theseN' samples. o One of the advantages of the new location M-estimators
Step 2. For each case and each combinationcpfand Cp,  for random fuzzy numbers introduced in this paper lies in the
we then generated = 1000 random samples andact that the recently established representer theorerhen t
calculated the corresponding M-estimates. Based @Bntext of robust density estimation could be easily extend
these M-estimates, the mean squared error w.r.t. §ethe case of fuzzy -number data, as shown in Section Il
population targets has been computed for each Igithough the M-estimates based on the representer theorem
cation measure, using four different metrics, namelave peen developed for thej metric, otherL? metrics
p1, 21, Dy 5, andps. between fuzzy numbers allowing to embéd (R) into a
The results of our comparative analysis are summeenvex cone of a Hilbert space are also worthwhile to comside
rized in Table I, which lists for each setting the M-+or instance, in most of the examples and simulations in this
estimator that yielded the lowest estimated mean squaresber we have also considered thé metric based on the
error. We used the abbreviations HAMP = M-estimatowabl/Idev/rdev representation introduced in Sinetaal. [3],
with Hampel loss function, HUB = M-estimator withbut the conclusions have been essentially the same.
Huber loss function, 1-n = 1-norm median, w/l/r & It should be pointed out that, in spite of the fact that
wabl/ldev/rdev median. The notation distinguishes the the mathematical aparatus behind the M-estimates in Subsec
Hampel and Huber M-estimators computed by means tibns IlI-A and IlI-B involves the Hilbert space-valued Set),
the D! distance. The detailed results from the simulahe particular case of fuzzy data is definitely much simpler
tions can be found &ittp://bellman.ciencias.uniovi.es/SMIRE/ and easier-to-follow. Furthermore, due to the represehter
Archivos/SimulationsMestimates.pdf. orem, the computations reduce to the calculus of weighted
From Table | it becomes clear that there does not existn@eans. The main practical difficulty concerns the calculus
uniformly most appropriate M-estimator of location. Howev of the involved weights, but this iterative procedure can be
the M-estimator based on Hampel's loss function seems to ibgplemented inR [55] or similar tools.
the most suitable estimator in most of the situations whenFinally, an important remaining problem is to adapt the M-
the trapezoidal fuzzy data are assumed to be generated frestimates of location with unknown dispersion to the fuzzy-
independent real random variables. In the case that thesdued case. This would formally overcome the lack of scale
variables are dependent, the 1-norm median seems to dogiivariance for the location M-estimators. Thereforee th
the most successful when mid-points are generated frontuaming constant(s) in the loss functions would not need to be
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determined from the data anymore. We hope to solve this isge@ P.J. HuberRobust StatisticsNew York: J. Wiley & Sons, 1981.
in the future, when robust dispersion measures for fuzza dﬁll] D.G. LuenbergerOptimization by Vector Space Methoddew York:

are also developed.
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