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1 Introduction

In recent years non-Abelian T duality (NAT duality) has been very successfully applied

as a generator of new supergravity backgrounds that may have interesting applications in

the context of the AdS/CFT correspondence [1]–[17]. While some of these backgrounds

represent explicit new solutions to existing classifications [1, 4, 5, 12], some of them have

been shown to fall outside known classifications [18] or to provide the only explicit solution

to some set of PDEs [3].

A very inspiring example is the AdS6 solution to Type IIB supergravity constructed

in [3]. Supersymmetry is known to impose strong constraints on AdS6 backgrounds [19,
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20],1 even if large classes of fixed point theories are known to exist in 5 dimensions [22–24]

with expected AdS6 duals. The only AdS6/CFT5 explicit example identified to date is the

duality between the Brandhuber and Oz solution to massive Type IIA [25] (known to be

the only possible IIA AdS6 background [19]2) and the fixed point theory that arises from

the D4/D8/O8 system in [22]. Yet, there are families of 5 and 7-brane webs giving rise

to 5d fixed point theories [27–29] whose dual AdS6 spaces remain to be identified. The

solution in [3]3 provides a possible holographic dual to these theories.

The duality between 3d SCFTs arising from M5-branes wrapped on 3d manifolds and

AdS4 spaces is yet another example in which explicit AdS4 solutions with the required

properties are scarce. Remarkable progress has been achieved recently [30] through the

construction of explicit AdS4×Σ3×M4 solutions to massive IIA which are candidate duals

to compactifications of the (1, 0) 6d CFTs living in NS5-D6-D8 systems [31] on a 3-manifold

Σ3, which could eventually lead to a generalization of the 3d-3d correspondence [32–38]

to N = 1. The N = 2 case is yet especially interesting, since with this number of su-

persymmetries the 3d-3d correspondence allows to associate a 3d N = 2 SCFT to the 3d

manifold on which the M5-branes are wrapped [32–38]. This field theory arises as a twisted

compactification on the 3d Riemann surface of the (2, 0) CFT6 living in the M5-branes.

However, to date only one N = 2 AdS4 explicit solution to M-theory is known that

could provide the holographic dual to these compactifications. This solution is the uplift

to eleven dimensions [40, 41] of the Pernici-Sezgin solution [42] to 7d gauged supergravity,

that dates back to the 80’s. This is of the form AdS4 ×M7 where M7 is an S4-fibration

over a hyperbolic manifold H3, on which the M5-branes are wrapped. The Pernici-Sezgin

solution is the only explicit solution of the form AdS4 × Σ3 × S4 in the general class of

N = 2 AdS4 backgrounds obtained from M5-branes wrapping calibrated cycles in [43].

In this paper we construct a new N = 2 AdS4 solution to M-theory belonging to the

general class of N = 2 AdS4 backgrounds derived in [43]. This class is defined by requiring

that the Killing spinors satisfy the same projection conditions as the wrapped branes and

that there is no electric flux. Yet the solutions need not describe in general M5-branes

wrapped in 3d manifolds in the near horizon limit. Our solution seems to belong to this

more general class.

We obtain our solution through non-Abelian T-duality on the AdS4×CP 3 background

dual to ABJM [44], followed by an Abelian T-duality and an uplift to eleven dimensions.

The non-Abelian T-duality transformation is responsible for the breaking of the supersym-

metries from N = 6 to N = 2. The detailed properties of the resulting N = 2 AdS4

solution to Type IIB were studied in [11]. This solution contains two U(1)′s, one of which

can be further used to (Abelian) T-dualize back to Type IIA without breaking any of the

supersymmetries. Finally, the solution is uplifted to eleven dimensions, where it can be

shown to fulfill the conditions for 11d N = 2 AdS4 solutions with purely magnetic flux,

derived in [43].4

1See also [21].
2Variations of it such as orbifold solutions have also been constructed in [26].
3See [8] for a discussion of the properties of the associated CFT.
4A systematic study of the most general class of N = 2 AdS4 solutions of 11d supergravity, that includes

the results in [43], was carried out in [45].
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The paper is organized as follows. In section 2 we recall briefly the IIB solution con-

structed in [11] through non-Abelian T-duality acting on the AdS4×CP 3 IIA background.

In section 3 we construct its IIA Abelian T-dual, and discuss some properties of the as-

sociated dual CFT of relevance for the CFT interpretation of the 11d solution. Section 4

contains the uplift to M-theory. Here we discuss some properties of the CFT associated to

the 11d solution, that are implied by the analysis of the supergravity solution as well as its

IIA description. We compute the holographic central charge and show that, as expected,

it coincides with the central charge of the IIB solution written in terms of the 11d charges.

Thus, it scales with N3/2, contrary to the expectation for M5-branes. We argue that the

field theory analysis that we perform suggests that there should be Kaluza-Klein monopoles

sourcing the background, and that M5-branes should only play a role in the presence of

large gauge transformations (in a precise way that we define). This is intimately related

to the existence of a non-compact direction inherited by the NAT duality transformation,

which, as discussed at length in the NAT duality literature (see for instance [8, 11, 17]),

represents the most puzzling obstacle towards a precise CFT interpretation of this trans-

formation. Finally, in appendix A we present our conclusions. Here we discuss further our

result for the free energy, as well as the view that we have taken to try to give a CFT

meaning to the non-compact direction. We have relegated most of the technical details

to three appendices. In appendix A we include some details of the derivation of both the

NAT and T dual solutions presented in sections 2 and 3. These details are especially rele-

vant for the supersymmetry analysis. In appendix B we review the G-structure conditions

for preservation of supersymmetry of AdS4 ×M6 solutions to Type II supergravities. In

appendix C we perform the detailed supersymmetry analysis of the solutions in IIA, IIB

and M-theory.

2 The IIB NAT dual AdS4 solution

This solution was constructed in [11], where some properties of the associated dual CFT

were also analyzed. We refer the reader to this paper for more details. In this section we

present the background for completeness. More technical properties of the derivation that

will be useful for the study of the backgrounds constructed from this one in the following

sections are presented in appendix A.

The background arises as the NAT dual of the AdS4 × CP3 background with respect

to a freely acting SU(2) in the parameterization of the CP3 as a foliation in T 1,1 = S2×S3:

ds2(CP3)=dζ2 +
1

4

(
cos2 ζ(dθ2

1 + sin2 θ1dφ
2
1) + sin2 ζ(dθ2

2 + sin2 θ2dφ
2
2)

+ sin2 ζ cos2 ζ(dψ + cos θ1dφ1 + cos θ2dφ2)2
)

=dζ2+
1

4

(
cos2ζ(dθ2

1 +sin2θ1dφ
2
1)+sin2ζ(ω2

1 + ω2
2)+sin2ζ cos2ζ(ω3+cos θ1dφ1)2

)
(2.1)

where 0 ≤ ζ < π
2 , 0 ≤ θi < π, 0 ≤ φi ≤ 2π, 0 ≤ ψ ≤ 4π.
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Dualising with respect to the SU(2) acting on the 3-sphere parameterized by (ψ, θ2, φ2)

we obtain

ds̃2 =
L2

4
ds2(AdS4) + L2

(
dζ2 +

1

4
cos2 ζ (dθ2

1 + sin2 θ1dφ
2
1)
)

+ ds2(M3) , (2.2)

where ds2(M3) stands for the 3-dimensional metric:

ds2(M3) =
1

16 detM

[
L4 sin4 ζ

(
dr2 + r2dχ2 − sin2 ζ (sinχdr + r cosχdχ)2 +

+r2 cos2 ζ sin2 χ (dξ + cos θ1dφ1)2
)

+ 16r2dr2
]
. (2.3)

detM is given by:

detM =
L2

64
sin2 ζ

(
16r2(sin2 χ+ cos2 χ cos2 ζ) + L4 sin4 ζ cos2 ζ

)
. (2.4)

Here (χ, ξ) parameterize the new 2-sphere arising through the NAT duality transformation,

that we will denote by S̃2. r is the non-compact coordinate generated by the transforma-

tion, which lives in R+. The presence of this non-compact direction is intimately related to

the long-standing open problem of extending NAT duality beyond spherical world sheets.

In the context of AdS/CFT applications this poses a problem to the CFT interpretation

of AdS backgrounds generated through this transformation. Some ideas to provide a con-

sistent interpretation have been proposed in [8, 11] (see also [17]), which we will partially

use in this paper. The reader is referred to these papers for more details.

The dilaton reads in turn

eφ =
L

k

1√
detM

. (2.5)

A B2 field is also generated that reads:

B2 =
L2 sin2 ζ

64 detM

[
−L4r cos2 ζ sin4 ζ cos θ1 sinχdφ1 ∧ dχ

−16 r2
(
r(cos2 ζ cos2 χ+ sin2 χ) Vol(S̃2) + sin2 ζ sin2 χ cosχdξ ∧ dr

)
− cos2 ζ cos θ1 cosχ (L4 sin4 ζ + 16r2) dr ∧ dφ1

]
. (2.6)

Together with this we find the RR sector:

F1 =
k

2

(
r sin2 ζ sinχdχ− sin2 ζ cosχdr − r sin 2ζ cosχdζ

)
(2.7)

F̂3 = − 3

128
kL4 sin3 2ζ dζ ∧Vol(S2

1) +
k

2

(
r dr ∧ (cos2 ζ Vol(S2

1) (2.8)

+ sin 2ζ cos θ1 dζ ∧ dφ1 + sin 2ζ sin2 χdζ ∧ dξ)− r2 sin 2ζ cosχdζ ∧Vol(S̃2)
)

F̂5 =
1

64
kL6 sin3 ζ cos ζ Vol(AdS4) ∧ dζ − 3

8
kL2rVol(AdS4) ∧ dr

+
k

2
r2
(

cos2 ζ Vol(S2
1) + sin 2ζ cos θ1 dζ ∧ dφ1

)
∧ dr ∧Vol(S̃2) , (2.9)

where Fp = dCp−1 −H3 ∧ Cp−3 and F̂ = F ∧ e−B2 are the fluxes associated to the Page

charges.
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Note that after the dualisation a singularity has appeared at the fixed point ζ = 0,

where the squashed S3 used to dualise shrinks to zero size. This singularity is associated

to the component of the metric on the r-direction, and is always compensated with the

singularity in the dilaton in computations of physical quantities such as gauge couplings,

internal volumes, etc. We will see that it will be inherited by the IIA and M-theory solutions

where physical quantities will however be perfectly well defined as well.

3 The IIA NAT-T dual AdS4 solution

Following the steps in appendix A we get the following solution in Type IIA after dualizing

the previous background along the φ1 direction, that we will simply rename as φ 5

ds2 =
L2

4
ds2(AdS4) + L2dζ2 +

L2

4
cos2 ζdθ2 +

4∑
i=1

(
Gi
)2
, (3.1)

where

G1 =
L

2
√

Ξ
y1 sin2 ζ cos ζ sin θdξ,

G2 = − 2

L
√

∆
√
Z
(
Zdy1 + y1y2dy2

)
,

G3 = − L

2
√
Z

sin ζdy2,

G4 =
2

L cos ζ
√

∆
√

Ξ

[
∆dφ− sin2 ζ cos2 ζ cos θ

{
y1y2dy1 +

(
y2

2 +
L4

16
sin4 ζ

)
dy2

}]
, (3.2)

and we have defined

∆ = sin2 ζ

(
y2

1 + cos2 ζy2
2 +

L4

16
sin4 ζ cos2 ζ

)
, Ξ = ∆ sin2 θ + y2

1 sin4 ζ cos2 θ, (3.3)

Z = y2
1 +

L4

16
sin4 ζ cos2 ζ,

and

y1 = r sinχ, y2 = r cosχ , (3.4)

so that we have

64L2
4∑
i=1

(
Gi
)2

=
1

∆ Ξ
cos2 ζ

{
16∆ sec2 ζdφ+ sin2 ζ cos θ

[
L4 sin4 ζ(cosχdr − r sinχdχ)

+16r2 cosχdr
] }2

+
16L4

Ξ
r2 sin4 ζ cos2 ζ sin2 θ sin2 χdξ2

+
16L4

Z
sin2 ζ(cosχdr − r sinχdχ)2

+
256

∆Z

[
L4

16
sin4 ζ cos2 ζ(sinχdr + r cosχdχ) + r2 sinχdr

]2

.

(3.5)

5Also θ1 ≡ θ and S2 ≡ S̃2.
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The NS 2 form is given by

B2 =
r2

Ξ
sin2 ζ sinχ

[
sin2 ζ sinχ

(
cos θdξ ∧ dφ− cosχdξ ∧ dr

)
− r
(

cos2 ζ sin2 θ + sin2 ζ sin2 χ
)
dχ ∧ dξ

]
, (3.6)

while the dilaton is

eΦ =
4

kL cos ζ
√

Ξ
. (3.7)

Notice that this blows up at ζ = 0 indicating that the geometry is singular here, which is

confirmed when one studies the curvature invariants.

The RR sector is given by

F̂2 =
k

16

[
3L4 sin3 ζ cos3 ζ sin θdζ ∧ dθ + 8r sin 2ζ

(
cos θdζ ∧ dr − cosχdζ ∧ dφ

)
+ 8r cos2 ζ sin θdθ ∧ dr − 8 sin2 ζ

(
cosχdr ∧ dφ+ r sinχdφ ∧ dχ

)]
, (3.8)

F̂4 =
k

2
r cos ζ sinχ

[
2 sin ζ

(
sinχdζ ∧ dξ ∧ dr ∧ dφ+ r cos θdζ ∧ dξ ∧ dr ∧ dχ

r cosχdζ ∧ dξ ∧ dφ ∧ dχ
)

+ r cos ζ sin θdθ ∧ dξ ∧ dr ∧ dχ
]
, (3.9)

where the gauge invariant fluxes are expressed in terms of these via F̂ = F ∧ e−B2 .

3.1 Supersymmetry

It was shown in [11, 13] that the NAT dual of ABJM preserves N = 2 supersymmetry in

3d, which means the R-symmetry is U(1) in the dual CFT. The argument relies on a proof

from [13]. In order to see this we must package all the dependence of the original geometry

on the SU(2) isometry in a canonical frame6

ea+3 = eCa(x)(ωa +Aa(x)) (3.10)

where each left-invariant one form ωa appears only once, and xµ are coordinates on some

7d base which fibers the squashed 3-sphere containing the SU(2) isometry. Then there is a

bijective map between spinors independent of the SU(2) directions in this frame and those

preserved by the NAT dual solution. The map acts on the 10 dimensional MW Killing

spinors as

ε̂1 = ε1, ε̂2 = ΩSU(2)ε2, (3.11)

with the matrix7

ΩSU(2) = Γ(10)−eC1+C2+C3Γ456 + vae
CaΓa+3√

e2(C1+C2+C3) + e2Cav2
a

, (3.12)

6We write ea+3 to match notation elsewhere where the canonical vielbeins are e4, e5, e6.
7This expression originally appeared in [5], where it was conjectured to hold by analogy with the

Abelian case.
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where va are dual coordinates in the NAT dual geometry, which we are expressing elsewhere

in terms of spherical or cylindrical polar coordinates v1 = y1 cos ξ, v2 = y2 sin ξ, v3 = y2.

In appendix C.1 we derive a spinor for ABJM independent of the SU(2) directions.

This may be written in terms of 6 dimensional MW spinors on CP3 as in appendix B

η1
+ = ei

3π
4 η+, η2

+ = e−i
3π
4 η+ (3.13)

where (η1,2
+ )∗ = η1,2

− with the sign labeling chirality. It is possible to decompose the 6d

spinors in terms of two in linearly independent parts η+ = π+ + π̃+ obeying the projections

of eq. (C.32). We can then make the coordinate dependence explicit as

π+ = eζγ
34
π0

+, π̃+ = e−ζγ
34
π̃0

+, (3.14)

where we have introduced linearly independent constant spinors obeying the projections

γ1456π0
+ = −π0

+, γ2345π0
+ = π0

+,

γ1456π̃0
+ = −π̃0

+, γ2345π̃0
+ = π̃0

+, (3.15)

in the frame of eq. (A.3). The 10d spinor is constructed as in eq. (B.3), but all dependence

on the CP3 directions is in eq. (3.14), which is clearly independent of the SU(2) directions.

So N = 2 is preserved under the NAT duality transformation. We show in appen-

dices C.2, C.3 that the solution does this by mapping a U(1)’s worth of the SU(3)-structures

supported by CP3 to a U(1)’s worth of dynamical SU(2)-structures defined on the dual in-

ternal space M̂6. Of course only two of these dual objects are truly distinct: those that

are defined in terms of the two linearly independent Killing spinors on M̂6. These may be

summed to give the internal part of the N = 2 Killing spinor in IIB, namely

η̂1
+ = ei

3π
4

(
eζγ

34
π0

+ + e−ζγ
34
π̃0

+

)
,

η̂2
+ = ei

3π
4

(
κ‖
(
eζγ

34
π0

+ + e−ζγ
34
π̃0

+

)
+ κ⊥J

(
e−ζγ

34
π0
− + +eζγ

34
π̃0
−
))
, (3.16)

where κ⊥ and κ‖ satisfy κ2
⊥+κ2

‖ = 1 and are given in eq. (C.27). The Matrix J is defined as

J = i
eC1+C2+C3 cos 2ζγ1 + eC1v1γ

4 + eC2v2γ
5 + eC3v3γ

6√
e2(C1+C2+C3) cos2 2ζ + e2C1v2

1 + e2C2v2
2 + e2C3v3

3

, (3.17)

in the frame of eq. (A.3), where eCa are given in eq. (A.2). However for what follows it is

only important that J is independent of φ.

It turns out that the amount of preserved supersymmetry is left invariant when we

perform an additional T-duality on ∂φ. As proved in [55] (see also [13]), to see this it is

sufficient to show that the Killing spinors are independent of φ in the canonical frame of

T-duality, where φ only appears in the vielbein

eφ = eC(x)
(
dφ+A(x)). (3.18)
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We get to such a frame by performing a SO(4) transformation R in eq. (A.14), on the

canonical NAT dual vielbeins in eq. (A.8). The action of this rotation on the 10d Majorana

Killing spinor will be ε→ Sε, where

S−1γaS = Rabγb. (3.19)

The matrix S will be complicated but will not depend on φ because R does not, which is

all that matters. This together with the fact that eq. (3.16) is φ independent ensures all

supersymmetry must be preserved. Indeed in the next section (see also appendix C.4) we

see that upon lifting to M-theory the NAT-T dual solution preserves N = 2 supersymmetry

in the form of a local SU(2) structure in 7d of the form given in [45].

3.2 Properties of the CFT

In this section we briefly discuss some properties of the CFT associated to the NAT-T dual

solution. The discussion follows very closely the analysis in reference [11] for the IIB NAT

solution. For this reason we will omit most of the explicit computations. The reader is

referred to this reference for more details.

It was shown in [8, 11] that the presence of large gauge transformations in NAT dual

backgrounds allows to constrain quite non-trivially their global properties. In our particular

background (see [11]) it is easy to see that at the singularity ζ = 0 the NS 2-form given

by (3.6) reduces to

B2|ζ∼0= −rVol(S2) , (3.20)

while the space spanned by (ζ, S2) becomes conformal to a singular cone with boundary

S2. Therefore large gauge transformations can be defined on this non-trivial 2-cycle, which

must render

b =
1

4π2

∣∣∣∣∫
S2

B2

∣∣∣∣ (3.21)

in the fundamental region. For this, B2 must transform into B2 → B2 + nπVol(S2) when

r ∈ [nπ, (n+ 1)π].

In turn, the F̂3 and F̂5 field strengths lying on the ζ, θ, φ and ζ, θ, φ, S2 directions of the

NAT dual solution in [11] give rise after the T-duality to F̂2 and F̂4 field strengths lying on

the ζ, θ and ζ, θ, S2 directions, with the second one non-vanishing only in the presence of

large gauge transformations. Accordingly, a Page charge associated to the ζ, θ components

of F̂2 is generated in IIA from the quantization condition

1

2κ2
10

∫
F̂p = T8−pN8−p . (3.22)

As in [11] this charge is to be interpreted as the rank of the gauge group of the CFT dual

to the solution in the r ∈ [0, π] interval. We indeed get N6 = N5, with N5 given by (3.18)

in [11]. Specifically this fixes L to satisfy

kL4 = 64πN6. (3.23)

Note that this means that color branes are now D6-branes spanned on the R1,2×M1×S1
φ×S2

directions. One can indeed check that these branes are BPS when placed at the ζ = 0

– 8 –
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singularity. As in [11] the combination e−φ
√
grr in the DBI action is non-singular, rendering

well-defined color branes.

In the presence of large gauge transformations with parameter n there is also a non-

vanishing D4-brane charge N4 = nN6, equal to the N3 charge in [11]. Indeed one can

check that D4-branes are also BPS when placed at ζ = 0. These branes should also play

a role as color branes for n 6= 0, that is, in the r ∈ [nπ, (n + 1)π] intervals. The physical

interpretation is that N4 charge is created in the worldvolume of a D6 when it crosses n

NS5. It is then plausible that the field theory dual to the solution in the [nπ, (n + 1)π]

intervals arises in a (D4, D6) bound state — NS5 intersection. A similar realization was

suggested in [17] for AdS3 duals.

The charge interpreted as level in ABJM is also doubled under the NAT duality trans-

formation. As a result, after the new Abelian T-duality we get two charges, k6, k4, as-

sociated to the (r, θ) and (r, θ, S2) components of F̂2 and F̂4, respectively. They thus

correspond to D6 and D4 branes or, equivalently, to D4-branes carrying both monopole

and dipole charges. We may express the levels in terms of k and the number of large gauge

transformations performed as

k6 = k
(2n+ 1)π

4
, k4 = k

(3n+ 2)π

12
. (3.24)

Finally, it is easy to check that particle-like brane configurations can be associated to

each of the charges with an interpretation as either rank or level in the IIA background.

These branes are in all cases D2 or D4 branes wrapped on different sub-manifolds of the

internal space. In particular:

• Di-monopoles ↔ D2 on M1 × S1
φ, D4 on M1 × S1

φ × S2

• ’t Hooft monopoles ↔ D2 on {M1, θ}, D4 on {M1, θ, S
2}

• Di-baryons ↔ D2 on {ζ, S1
φ}, D4 on {ζ, S1

φ, S
2}

• Baryon vertices ↔ D2 on {ζ, θ}, D4 on {ζ, θ, S2}

As for the IIB AdS4 solution (see [11] for the details) the di-monopoles and ’t Hooft

monopoles have to sit at ζ = 0 while the di-baryons sit at r = 0.

The previous analysis suggests a dual CFT in the r ∈ [0, π] region defined in terms of a

U(N6)k4×U(N6)−k4 quiver gauge theory with N = 2 supersymmetry, sourced by D6-branes

spanned on the R1,2 ×M1 × S1
φ × S2 directions.8 In turn, for r ∈ [nπ, (n+ 1)π] the gauge

theory would arise from (D4, D6) - NS5 intersections. It was argued in [11] that invariance

under large gauge transformations would imply that the seemingly different CFTs dual to

the solution as the non-compact internal direction increases, could be related by some kind

of duality, as in [39], with the essential difference that in this case the flow parameter would

not be the energy scale but the non-compact internal direction. Reference [17] proposed an

alternative mechanism which, applied to our solution, would imply that new U(N6)×U(N6)

gauge groups would be created by some kind of un-higgsing mechanism, also not related to

8One can see (see [11]) that k4 is the level associated to the D6 color branes.
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an energy scale, every time a NS5-brane is crossed. It would be interesting to understand

better these proposals for the dual CFT as r increases.

In any case, keeping in mind that there is no a priori reason to expect that the new

geometry makes sense as a string theory background,9 we can just take these proposals as

stringy inspired arguments in favor of the existence of a fundamental region in which the

dual CFT would contain the same number of gauge groups as the original one.

Restricting ourselves to the r ∈ [0, π] region, a candidate brane realization of the dual

CFT would then be the T-dual of the brane picture proposed in [11] for the NAT dual

of ABJM:
52

2 : × × × × × × − z1 z2 −
N6D6 : × × × − × − × × × −

(52
2, k4 D4) : × × × − × cos θ − − − sin θ

(3.25)

where 52
2 denotes the IIA exotic brane that arises after a T-duality transformation along

a worldvolume direction of the 52
2 exotic brane of the IIB configuration [11], and z1 and

z2 denote the two special Killing directions of this brane [49, 50]. In our notation the

(52
2, k4 D4) bound state would be extended along the 0124 and x5 cos θ+x9 sin θ directions,

and its relative orientation w.r.t. the 52
2-brane in the 59 plane would depend on k4.

Note that the previous picture implies that in M-theory the corresponding AdS4 ge-

ometry would be sourced in the fundamental region r ∈ [0, π] by Kaluza-Klein monopoles,

as we discuss in the next section.

4 The purely magnetic AdS4 solution in M-theory

In this section we lift the solution of the previous section to M-theory and show that it

falls into the general class of solutions with purely magnetic flux considered in [43]. The

analysis of quantized charges suggests a dual CFT arising from Kaluza-Klein monopoles

and M5-branes wrapped on the Taub-NUT direction of the monopoles. We compute the

central charge and show that it scales with (N5 + N6/2)3/2, where N5 is the number of

wrapped M5-branes and N6 the number of Kaluza-Klein monopoles. This becomes simply

N
3/2
6 in the fundamental region r ∈ [0, π].

4.1 Fluxes

The RR potentials of the IIA solution are given by

C1 =
k

16

(
cos2 ζ cos θ(3L4 sin3 ζ cos ζdζ − 8rdr)− 8r cosχ sin2 ζdφ

)
, (4.1)

C3 −B2 ∧ C1 =
k

2
r2 cos ζ sinχ

(
sin ζ sinχdζ ∧ dξ ∧ dφ− cos θ cos ζdξ ∧ dr ∧ dχ

)
. (4.2)

C1 gives rise to the gµz/gzz component of the 11d metric, where z denotes the eleventh

direction. Given that there is a magnetic charge associated to C1 in IIA, a quantized Taub-

NUT charge arises in 11d. The brane that carries Taub-NUT charge is the Kaluza-Klein

9An essential difference with respect to its Abelian counterpart is that non-Abelian T-duality has not

been proved to be a symmetry of String Theory (see [51]).
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monopole, which is connected to the IIA D6-brane upon reduction along the eleventh,

Taub-NUT direction. Since the IIA solution was sourced by D6-branes in the fundamental

region r ∈ [0, π], Kaluza-Klein monopoles should play the role of color branes in M-theory

in this region. As we will discuss, BPS KK-monopoles spanned on the R1,2×M1×S1
φ×S2

directions can indeed be constructed in 11d that give rise to the D6 color branes in IIA

upon reduction.

(C3 −B2 ∧ C1) gives rise in turn to the 3-form10

Ĉ3 = C3 − ikC3 ∧
k1

k2
(4.3)

in 11d. Note that Ĉ3 has no components along the eleventh direction. This will be of

relevance in our later discussion. The M-theory 4-form flux is then given by

G4 = dC3 = d

(
Ĉ3 + ikC3 ∧

(
k1

k2
+ dz

))
(4.4)

which, as we can see, is purely magnetic. Therefore there will be no M2-branes sourcing

the 11d solution.

As we have noted, Ĉ3 is by construction transverse to the eleventh direction. This po-

tential couples in the worldvolume of M2-branes constrained to move in the space transverse

to the Killing direction and in the worldvolume of M5-branes wrapped on this direction [46].

Moreover, its magnetic components are associated to wrapped M5-branes. Indeed one can

show that these branes are BPS in the 11d background and are to be interpreted as color

branes. They give rise upon reduction to the color D4-branes of the IIA background. Other

field theory observables that we will be able to describe holographically will be constructed

in terms of M2-branes transverse to the Killing direction or M5-branes wrapped on this

direction.

4.2 Geometry and local SU(2) structure

In [45] it was shown that the most general N = 2 preserving solution in M-theory with

an AdS4 factor supports an SU(2) structure in 7d. As the M-theory 4-form G4 is purely

magnetic it actually falls into the more constrained class of solutions originally considered

in [43]. In this section we show that we can uplift the IIA solution to M-theory and fit it

into this class of solutions.

The metric ansatz of [45] is of the form

ds2
11 = e2∆̃

(
ds2(AdS4) + ds2(M7)

)
(4.5)

where we have

e2∆̃ = L2e−
2
3

Φ, ds2(M7) =
1

L2

[
ds2(M6) + e2Φ

(
C1 + dz

)2]
, (4.6)

10Our notation is that ikC3 denotes the interior product of C3 with the Killing vector kµ = δµz , that

points on the eleventh direction, k1 is the 1-form k1 = ikg and k2 the scalar k2 = ikikg, where g stands for

the eleven dimensional metric.

– 11 –



J
H
E
P
1
0
(
2
0
1
5
)
0
0
4

so that Ricci(AdS4) = −12 g(AdS4) to match the conventions of [45]. The metric on M6

is mearly the internal part of the IIA metric in eq. (3.1).

It is possible to express the internal 7d metric in the form

ds2(M7) = ds2(SU(2)) + E2
1 + E2

2 + E2
3 (4.7)

where ds2(SU(2)) is the metric on a 4 manifold supporting a canonical SU(2)-structure

with associated real 2-form J = J3 and holomorphic 2-form Ω = J1 + iJ2, satisfying

J3 ∧ J3 =
1

2
Ω ∧ Ω̄, J3 ∧ Ω = 0, ιEiJ3 = ιEiΩ = 0. (4.8)

Since G4 is purely magnetic it is possible to define local coordinates such that [43]

E1 =
1

4
e−3∆̃ρ dξ, E2 =

1

4
e−3∆̃ dρ√

1− e−6∆̃ρ2

, (4.9)

where ξ parametrizes the U(1) R-symmetry and ρ is defined through the associated Reeb

vector ξ̃ as |ξ̃|2 = e−6∆ρ2. Supersymmetry then requires that the SU(2) forms satisfy

d
(
e3∆̃
√

1− |ξ̃|2E3

)
= e3∆̃

(
2J3 − 2|ξ̃|E2 ∧ E3

)
,

d
(
|ξ̃|2e9∆̃J2 ∧ E2

)
= e3∆̃|ξ̃|d

(
e6∆̃J1 ∧ E3

)
,

d
(
e6∆̃J1 ∧ E2

)
= −e3∆̃|ξ̃|d

(
e3∆̃J2 ∧ E3

)
, (4.10)

and the flux be given by

G4 =
1

4
dξ ∧ d

(
e3∆̃
√

1− |ξ̃|2J1

)
. (4.11)

We find that the uplift of the IIA solution fits into the above parametrisation. All the

forms are defined in terms of the internal M-theory Killing spinors derived in appendix C.4,

one needs only to plug them into the bi-linears in appendix B of [45]. Performing these

steps with some liberal application of Mathematica, we find the local coordinate

ρ =
k

8
L4y1 sin2 2ζ sin θ, (4.12)

and the solutions specific vielbein

E3 = − e−3∆̃√
1− e−6∆̃ρ2

[
kL2

256
sin2 2ζ

(
L4 sin2 2ζ sin θdθ+64y2dφ−64(y1dy1+y2dy2) cos θ

)

+ L2 cos 2ζ
(
dz + C1

)]
, (4.13)
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where C1 is the potential giving rise to the IIA RR 2-form, which may be found in eq. (4.1).

To express the SU(2) forms we introduce the following orthonormal frame

e1 =
1√

X1

√
X2

(
2X1dy2 + 32y1y2 cos2 ζ sin θ

(
sin θdy1 + y1 cos θdθ

))
, (4.14)

e2 =
e−3∆̃kL2

8
√
X1

√
X2

(
cos2 ζ cos θ

(
X1(16y2

2 + L4 sin4 ζ)dy2 − 256y3
1y2 sin2 θdy1

)
−X2 sin2 ζdφ

)

− 32y2e
3∆̃

kL6 sin2 ζ
√
X1

√
X2

(
16y2 cos θdy2 − L4 cos2 ζ sin2 ζ sin θdθ

)
,

e3 =
e−3∆̃kL4 sin 2ζ

32
√
X1

√
1− e−6∆ρ2

(
−X1dζ + 4y1 sin 2ζ cos 2ζ sin θ

(
sin θdy1 + y1 cos θdθ

))
,

e4 =
cos 2ζ

2L2
√
X1

(
16y2dφ+ L4 cos2 ζ sin2 ζ sin θdθ − 16 cos θ

(
y1dy1 + y2dy2

))

− kL6 cos2 ζ sin2 ζ
√
X1e

−3∆̃

8
√

1− e−6∆ρ2

(
dz + C1

)
,

where

X1 = 16y2
1 cos2 θ sin2 ζ + 16y2

2sin
2θ cos2 ζ + L4 sin2 θ sin4 ζ cos2 ζ, (4.15)

X2 = 16y2
1 cos2 θ

(
16y2

1 + L4 sin4 ζ cos2 ζ
)

+ L4 cos2 ζ sin2 ζ sin2 θ
(
16y2

1 + cos2 ζ(16y2
2 + L4 sin4 ζ)

)
.

With respect to this basis we have

J = e1 ∧ e2 + e3 ∧ e4, Ω = eiα(e1 + ie2) ∧ (e3 + ie4), (4.16)

where the phase α is defined through

tanα = − e3∆̃

kL2 cos θ y2
1

. (4.17)

4.3 Properties of the CFT

As in the previous section, some properties of the CFT dual can be inferred by analyzing

the 11d supergravity solution. The picture that arises is simply the 11d realization of the

IIA picture described in subsection 3.2, apart from some subtleties that have to do with

the existence of the special Taub-NUT direction. Indeed, all brane configurations that play

a role in 11d will be either transverse to this direction or wrapped on it.

The non-trivial S2 of the IIA geometry is also present in the 11d uplift. Therefore

one can define large gauge transformations for the uplift of the B2 field, which is the 11d

3-form potential with a component along the Taub-NUT direction, ikC3. Thus, as in the

IIA background, we need to divide r in intervals of length π in order to have ikC3 lying in

the fundamental region. From here the discussion parallels exactly the IIA discussion.

In 11d we find quantized charges N6 and N5 = nN6, equal to the N6 and N4, re-

spectively, in IIA. N6 is associated to KK-monopoles and N5 to M5-branes wrapped on
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the Taub-NUT direction of the monopole. The interpretation is that M5-brane charge

(with the M5-brane wrapped in the Taub-NUT direction of the monopole) is created in

the worldvolume of the KK-monopole when it crosses M5-branes transverse to the Taub-

NUT direction.11 Using the worldvolume effective action that describes a KK-monopole

in 11d [47, 48] one can easily check that it is BPS when placed at ζ = 0. The calcula-

tion parallels the D6-brane calculation in IIA with the only difference that the action is

now written in terms of eleven dimensional fields. Similarly an M5-brane wrapped on the

Taub-NUT direction is also BPS at this location.

As in IIA, the charge interpreted as level in 11d is also doubled, and we get two values

k6 and k5 equal to the k6 and k4 charges, respectively, in IIA. These are now associated to

wrapped M5-branes carrying monopole and dipole charges.12

Similarly, we find particle-like brane configurations, which are either M2-branes trans-

verse to the Taub-NUT direction or M5-branes wrapped on this direction. These branes

are wrapped on the same sub-manifolds of the internal space as in IIA. Namely,

• Di-monopoles ↔ M2 on M1 × S1
φ, M5 on M1 × S1

φ × S2 × S1
z

• ’t Hooft monopoles ↔ M2 on {M1, θ}, M5 on {M1, θ, S
2, S1

z}

• Di-baryons ↔ M2 on {ζ, S1
φ}, M5 on {ζ, S1

φ, S
2, S1

z}

• Baryon vertices ↔ M2 on {ζ, θ}, M5 on {ζ, θ, S2, S1
z}

As for the IIB AdS4 solution (see [11] for the details) the di-monopoles and ’t Hooft

monopoles have to sit at ζ = 0 while the di-baryons sit at r = 0. In these derivations we

have used the action that describes M2-branes transverse to the Taub-NUT direction of

the monopole. In this action ikC3 couples in both the DBI and CS parts, so the M2-branes

are sensitive to large gauge transformations. The details of this action can be found in [46].

Putting together this information, and in analogy with the IIA discussion, we expect a

field theory in the r ∈ [0, π] region described by a U(N6)k5 ×U(N6)−k5 quiver with N = 2

supersymmetry, sourced by KK-monopoles spanned on the R1,2×M1×S2×S1
φ directions,

and with Taub-NUT direction z. A possible brane realization in the fundamental region

r ∈ [0, π] could be

53 : × × × × × × − z1 z2 − z

N6M6 : × × × − × − × × × − z

(53, k4 M5) : × × × − × cos θ − − − sin θ ×
(4.18)

where z denotes the eleventh direction, the M6 is the Kaluza-Klein monopole with Taub-

NUT direction z and 53 is the exotic brane that gives rise to the IIA 52
2 brane upon

reduction [49, 50].

11Recall that in 11d ikC3 → ikC3 + nπVol(S2), and the M5 is magnetically charged with respect to this

field.
12As shown in [46], M5-branes wrapped on an isometric direction can carry KK-monopole charge, with

the Taub-NUT direction equal to the isometric direction.
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4.4 Free energy

We can now calculate the free energy on a 3-sphere in the CFT dual to the solution in

M-theory. This is expressed in terms of the effective 4 dimensional Newton constant G4 as

FS3 =
π

2G4
. (4.19)

One can determine G4 via a dimensional reduction of supergravity on the internal space

M7, the result is

1

16πG4
=

π

2(2π)9

∫
M7

e9∆̃Vol(M7), (4.20)

where we work in units such that lp = 1. For the case at hand the relevant quantity is

e9∆̃Vol(M7) =
k2L6

32
r2 sin3 ζ cos3 ζ sin θ sinχdζ ∧ dθ ∧ dφ ∧ dr ∧ dχ ∧ dξ ∧ dz. (4.21)

Integrating this in the region r ∈ [nπ, (n+ 1)π], z ∈ [0, 2π] and using eqs. (3.23), (3.24) we

arrive at

FS3 =

√
2π

36

(
12 +

N2
6(

N5 + N6
2

)2
)
√
κ6

(
N5 +

N6

2

)3/2

. (4.22)

This reproduces, as expected, the result in IIB, with N5, N3 → N6, N5 [11]. Essentially we

have FS3 ∼
(
N5 + N6

2

)3/2
which reproduces the N3/2 behavior of ABJM. In particular, in

the fundamental region r ∈ [0, π], where N5 = 0, we find

FS3 =

√
2π

33/2

√
k4N

3/2
6 . (4.23)

This is not a surprising result, given that the dependence of the free energy in type

II theories, like the central charge and entanglement entropy of the strip, depends on the

internal directions only through the quantity

Vint =

∫
M6

e−2ΦVol(M6), (4.24)

and is thus invariant under Abelian T-duality13 and uplift to 11d.

So, quite surprisingly, we have found an AdS4 M-theory solution with purely magnetic

flux that falls in the general classification of [43], that originates in M5-branes wrapped on

calibrated 3-cycles, but whose free energy does not exhibit the expected N3 behavior. We

leave a further discussion on this issue for the conclusions.

13It is not invariant though under non-Abelian T-duality, because even if the integrand is invariant, the S3

on which the dualisation is performed is transformed into an M1×S2 space, where M1 is the space spanned

by the r-direction, and thus the domain of integration changes. This is the reason why the prefactors

in (4.23) are not the same as in ABJM.
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5 Conclusions

In this work we have presented a new warped AdS4 solution of M-theory preserving N = 2

supersymmetry, giving the only known solution in this class other than the uplift of Pernici-

Sezgin. A legitimate question to ask is whether this solution is truly distinct from Pernici-

Sezgin, indeed this solution was generated by performing first a NAT then T duality on

AdS4×CP3, and some geometries derived via NAT duality have been shown to fall within

the ansatz of previous solutions. This does not seem to be the case with this example:

the quickest thing to note is that the free energy of Pernici-Sezgin scales as N3 while this

solution scales as N3/2. Additionally the uplift of Pernici-Sezgin is everywhere non singular

while the curvature invariants of this solution blow up in certain regions of parameter space.

One might still wonder if this solution approximates Pernici-Sezgin at least locally away

from the singularity, as was argued in [1] to be the case for the NAT dual of AdS5×S5 and

the Gaiotto-Maldacena geometries [53]. This also does not seem to be the case. Sfetsos

and Thompson were able to find an additional solution to the Gaiotto-Maldacena Toda

equation which gave their solution. The differential equations giving rise to Pernici-Sezgin

are more simple and are solved uniquely. So this solution is truly distinct.

In this work, following on [11], we have taken the view that the range of r is restricted

to lie in a specific cell of length π after n large gauge transformations of B2. The reason is to

ensure that 0 < |
∫
S2 B2|< 4π2, a restriction motivated by string theory. However this does

present an issue for the geometry, we are choosing to end it at a regular point which would

usually demand the inclusion of extra localized sources. From a purely geometric view

point we might choose to take 0 < r < ∞, however this would be very undesirable from

an AdS/CFT perspective. A continuous r would lead to, among other things, a CFT dual

with operators of continuous conformal dimension [8]. An attractive resolution to these

issues is that the NAT duality generates a solution which approximates a better defined

solution free of these pathologies. At any rate, regardless of these potential criticisms,

it seems likely that one could use this work as a stepping stone to further populate the

solution space of purely magnetic M-theory solutions.

Supersymmetric probe branes in the 11d uplift of the Pernici-Sezgin solution were

considered in [52], with an aim at introducing punctures on the Riemann surface along

the lines of [53]. The BPS configurations were shown to preserve two U(1)′s, one more

than required by the R-symmetry of the 3d N = 2 SCFT. This second U(1) corresponds

to a global U(1) in the 3d field theory, and seems to play a key role in the 3d-3d corre-

spondence [54]. It was argued in [52] that a large number of supersymmetric M5’s would

ultimately backreact on the Pernici-Sezgin geometry to produce a new AdS4 solution with

a U(1)2 isometry. It would be interesting to show whether the AdS4 solution obtained in

this paper, containing a U(1)2 isometry, could be related to this physical situation.

That the free energy of our purely magnetic AdS4 solution scales like FS3 ∼ N3/2 rather

than N3 is a little puzzling. It was proved in [45] that the presence of M2 branes, whether

accompanied by M5′s or not, always gives rise to N3/2 behavior. However we know that

our solution cannot contain M2 branes, indeed it is not possible to accommodate M2 branes

in a purely magnetic flux ansatz, so what are we to make of this apparent contradiction.
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Firstly it should be noted that, at least as far as the authors are aware, there is no proof

FS3 ∼ N3 holds universally for all wrapped M5 brane solutions. However this seems like

an inadequate evasion of a confusing result. More likely is that the solution we present

does not correspond to wrapped M5 branes. Indeed, the ansatz taken in [43] to derive the

purely magnetic solutions is defined by requiring the Killing spinors to satisfy the same

projection conditions as the wrapped branes. Yet the solutions need not describe in general

M5-branes wrapped in 3d manifolds in the near horizon limit. The metric we have obtained

is rather complicated and it seems difficult to identify a 3-cycle in the internal geometry

that such branes might wrap. This together with the fact that the free energy does not

scale with N3 is suggesting that this is indeed the case for our solution.

On the other hand, even if the CFT interpretation of the solution is yet very pre-

liminary, we seem to have found that there are quantized charges associated to both

KK-monopoles and M5-branes, with the first being the only sources of the geometry in

the r-region that we have defined as the fundamental region. This is also suggestive of a

geometry not originating from wrapped M5-branes.

Finally, let us comment on something slightly tangential. In the process of discussing

the supersymmetry preserved by purely magnetic M-theory solutions we analised the G-

structure preserved by the NAT dual of ABJM. We showed in appendix C.3 that this IIB

solution preserves a U(1)’s worth of dynamical SU(2)-structures in 6d. We note that, it is

possible to take the intersection of two of these and define an identity structure. However,

given that a complete systematic study of AdS4 solutions to type II supergravity preserving

N = 2 supersymmetry is currently absent form the literature, we have not pursued this

here. Even so we know that, as with the better studied AdS5, N = 1 cases [61, 62],

supersymmetry should be preserved in terms of either a local “SU(2)-structure” or “identity

structure” on the internal co-dimensions of the isometry dual to the U(1) R-symmetry. The

NAT dual of ABJM will certainly fall into the latter class.
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A Some details on the NAT and T duality transformations

In this appendix we give some details on the derivation of the solution in section 3. The

starting point is the AdS4 × CP3 metric written as a Hopf fibration

ds2 = ds2(M7) + e2Ca(ωa +Aa)
2, (A.1)
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where ωa are SU(2) left-invariant 1-forms satisfying dωa = 1
2εabcωb ∧ ωc and

ds2(M7) =
L2

4

[
ds2(AdS4) + 4dζ2 + cos2 ζ

(
dθ2 + cos2 θdφ2

)]
,

e2C1 = e2C2 =
L2

4
sin2 ζ, e2C3 =

L2

4
sin2 ζ cos2 ζ,

A1 = A2 = 0, A3 = cos θdφ, (A.2)

where the AdS radius is 1. Specifically we introduce the vielbeins

ex
µ

=
L

2
ρ dxµ, eρ =

L

2ρ
dρ, e1 = Ldζ, e2 =

L

2
cos ζdθ, e3 =

L

2
cos ζ sin θdφ,

e4 =
L

2
sin ζ ω1, e5 =

L

2
sin ζ ω2, e6 =

L

2
sin ζ cos ζ(ω3 + cos θdφ). (A.3)

The dilaton of this solution is constant and set to eΦ = k
L , while the non trivial fluxes are

F2 = G2 + Ja1 ∧
(
ωa +Aa

)
+

1

2
εabcK

a
0

(
ωb +Ab

)
∧
(
ωc +Ac

)
,

F4 = G4 +Ka
3 ∧

(
ωa +Aa

)
+

1

2
εabcM

a
2

(
ωb +Ab

)
∧
(
ωc +Ac

)
+N1

(
ω1 +A1

)
∧
(
ω2 +A2

)
∧
(
ω3 +A3

)
, (A.4)

where the only non zero components are

G2 = −k
2

cos2 ζ sin θdθ ∧ dφ, J3
1 = −k sin ζ cos ζdζ, K3

0 = −k
2

sin2 ζ,

G4 =
3kL2

8
Vol(AdS4). (A.5)

A.1 The IIB NAT duality

Expressing the solution in this manner allows one to simply read off the result of performing

a NAT duality transformation on ωa using [13]. The dual metric is given by

dŝ2 = ds2(M7) +
3∑

a=1

êa+3 (A.6)

We have introduced cylindrical polars for the dual coordinates

v1 = y1 cos ξ, v2 = y1 sin ξ, v3 = y2, (A.7)

and choose to express the dual canonical vielbeins ê in a way that makes the residual U(1)

isometry given by ∂ξ explicit

cos ξê4 + sin ξê5 = − 1

8L∆
sin ζ

[
4y1y2

(
4dy2 + L2 sin2 ζ cos2 ζ(dξ + cos θdφ)

)
+ dy1

(
16y2

1 + L4 sin4 ζ cos2 ζ
)]
,
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cos ξê5 − sin ξê4 = − 1

8L∆
sin ζ

[
4y1dy2 + cos2 ζ

(
− 4y2dy1 + L2y1 sin2 ζ(dξ + cos θdφ)

)]
,

ê6 = − 1

8L∆
sin ζ cos ζ

[
16y1y2dy1 + dy2(16y2

2 + L4 sin4 ζ)

− 4L2y2
1 sin2 ζ(dξ + cos θdφ)

]
êa = ea, a = xµ, ρ, 1, 2, 3, (A.8)

where we define

∆ = sin2 ζ

(
y2

1 + cos2 ζy2
2 +

L4

16
sin4 ζ cos2 ζ

)
. (A.9)

A NS two form is generated

B2 =
1

∆
y1 sin2 ζ

(
y1dy2 − y2 cos2 ζdy1

)
∧ dξ

− 1

∆
sin2 ζ cos2 ζ cos θ

(
y1y2 dy1 +

(
y2

2 +
L4

16
sin4 ζ

)
dy2

)
∧ dφ

while the dilaton becomes14

e−2Φ̂ =
L2

4
∆ e−2Φ. (A.10)

The solution also has all possible RR forms turned on. These can be found in [11] where

this solution was originally derived.

A.2 The IIA NAT-T duality

We would now like to perform a T-duality on the global U(1) corresponding to ∂φ. To do

this we can once more make use of the results of [13] (see [55] for the original derivation).

In order to do this we need to express the metric and B2 as

dŝ2 = dŝ2(M9) + e2C(dφ+A1)2,

B2 = B +B1 ∧ dφ. (A.11)

Clearly B2 is already in this form, while the same can be achieved for the metric with a

rotation of the vielbein basis ê→ Rê, giving

e2C =
Ξ

4∆
L2 cos2 ζ, A1 =

y2
1 sin4 ζ cos θ

Ξ
dξ, (A.12)

where

Ξ = ∆ sin2 θ + y2
1 sin4 ζ cos2 θ. (A.13)

14Notice that, for simplicity in other expressions, we are extracting a factor of L2

4
with respect to the

definition of ∆ in [13].
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A rotation that achieves this is

R =



−
√
ζ21+ζ22 sin ζ cos θ

√
Ξ0

sin θ(sin ξ−ζ3 cos ξ)√
Ξ0

− sin θ(ζ3 sin ξ+cos ξ)√
Ξ0

√
ζ21+ζ22 sin θ
√

Ξ0

0
ζ3 sin ξ+(ζ21+ζ22+1) cos ξ
√

∆0

√
ζ21+ζ22+1

(ζ21+ζ22+1) sin ξ−ζ3 cos ξ
√

∆0

√
ζ21+ζ22+1

√
ζ21+ζ22ζ3√

∆0

√
ζ21+ζ22+1

0 −
√
ζ21+ζ22 sin ξ√
ζ21+ζ22+1

√
ζ21+ζ22 cos(ξ)√
ζ21+ζ22+1

1√
ζ21+ζ22+1

−
√

∆0 sin θ√
Ξ0

√
ζ21+ζ22 sin ζ cos θ(ζ3 cos ξ−sin ξ)

√
∆0
√

Ξ0

√
ζ21+ζ22 sin ζ cos θ(ζ3 sin ξ+cos ξ)

√
∆0
√

Ξ0
− (ζ21+ζ22) sin ζ cos θ

√
∆0
√

Ξ0


(A.14)

which acts on 2456. We have introduced the following expressions

∆0 = 1 + ζ2
1 + ζ2

2 + ζ2
3 , Ξ0 = sin2 θ∆0 + sin2 ζ cos2 θ

(
ζ2

1 + ζ2
2

)
, ζa = vae

∑
b 6=a Ca .

(A.15)

With the rotated vielbein basis, we may give the RR forms in [11] in terms of them and

then use [13, 55] to read off the T-dual solution, getting then the results in section 3.

B Type-II G-structure conditions for AdS4 solutions

In this appendix we review the G-structure conditions for supersymmetric AdS4 × M6

solutions, which is a slight modification15 of what may be found in [56, 57], but with

notation more akin to [59, 63]. The metric can be cast in the form

ds2 = e2Ads2(AdS4) + ds2(M6), (B.1)

where the AdS radius is 1 and the dilaton has support only in M6. The fluxes have the

same direct product structure, which in terms of the RR polyform we may express as

F = Fint + e4AVol(AdS4) ∧ F̃ . (B.2)

We use a real representation of the 10d gamma matrices16 in which the Dirac and ordinary

conjugates coincide. A 4+6 split is performed on the 10d MW Killing spinors where

ε = (ε1, ε2)T and Γ(10)ε = σ3ε so that we can write

ε1 = eA/2
(
ζ+ ⊗ η1

+ + ζ− ⊗ η1
−
)
,

ε2 = eA/2
(
ζ+ ⊗ η2

∓ + ζ− ⊗ η2
±
)
, (B.3)

where ± labels chirality in 4 and 6 dimensions, so that the upper/lower signs should be

taken in IIA/IIB and (η+)∗ = η− and we take the internal, η1,2 spinor to have unit norm.

Preservation of supersymmetry may be expressed in terms of differential conditions on

two pure spinors

Ψ± = 8 η1
+ ⊗ η

2†
± . (B.4)

15Specifically with the normalization of the internal spinor.
16Specifically for the AdS4 directions Γµ = γ̂µ ⊗ 1, while on CP3 we define Γi = γ(4) ⊗ γi, where

γ̂µ and γa are representations of the gamma matrices in 3+1 and 6 dimensions respectively. We define

Γ(10) = γ(4) ⊗ γ(7), where γ(4) = iγ̂tx
1x2r and γ(7) = −iγ123456.
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These conditions are given by

(d−H) ∧
(
e3A−ΦΨ±

)
= −2e2A−ΦReΨ∓, (B.5)

(d−H) ∧
(
e4A−ΦΨ∓

)
= −3e3A−ΦImΨ± + e4AF̃ ,

where once more the upper/lower signs should be taken in IIA/IIB and

e4AF̃ = ιVol(AdS4)F. (B.6)

The G-structure on M6 can either be an SU(3), when η1
+ and η2

+ are globally parallel,

or SU(2) when they are not. Using a Fierz identity and the Clifford map it is possible

to express Φ± as polyforms. In the SU(3)-structure case we can write this in terms of a

complex 2-form J and a holomorphic 3-form Ωhol as

Ψ+ = e−iθ+e−iJ , Ψ− = eiθ−Ωhol, (B.7)

where the forms may be expressed in terms of the internal spinors as

Jab = −iη†+γabη+,
(
Ωhol

)
abc

= −η†−γabcη+, (B.8)

where

η1
+ = eiα1η, η2

+ = eiα2η, η†+η+ = 1, θ± = α1 ∓ α2, (B.9)

and the forms obey J ∧ J ∧ J = 3i
4 Ωhol ∧ Ω̄hol, J ∧ Ωhol = 0.

For the SU(2)-structure case the internal spinor may be expressed as

η1
+ = eiα1η+, η2

+ = eiα2
(
κ‖η+ + κ⊥χ+

)
(B.10)

where χ†+η+ = 0 and κ2
‖ + κ2

⊥ = 1. The pure spinors may then be expressed in terms of a

holomorphic 1-form z, a real 2-form j and a holomorphic 2-form ωhol as

Ψ+ = i eiθ+e
1
2
z∧z̄ ∧

(
κ‖e
−ij − iκ⊥ωhol

)
,

Ψ− = eiθ−z ∧
(
κ⊥e

−ij + iκ‖ωhol

)
. (B.11)

The various forms may be extracted from the spinor via

za = −iη†−γaχ+, jab =
1

2

(
−iη†+γabη+ + iχ†+γabχ+

)
, (ωhol)ab = iη†−γabχ−,

(B.12)

and obey the conditions,

j ∧ j =
1

2
ωhol ∧ ω̄hol, j ∧ ωhol, ωhol ∧ ωhol = 0, ιzωhol = ιzj = 0. (B.13)

Finally it should be noted that the above conditions are actually the conditions for N = 1

in 3d. We will be concerned with N = 2 supersymmetry which implies a CFT dual with

U(1) R-symmetry. This will manifest itself in the fact that there should be a U(1)’s worth

of pure spinors satisfying eq. (B.5), two of which are independent.17

17In the sense that they can be constructed from two sets of linearly independent internal spinors (η1, η2)

and (η̃1, η̃2).
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C Detailed supersymmetry analysis

In this appendix we shall look at how the Killing spinors are transformed under the sequence

of dualities we perform to reach the M-theory solution of section 4.2. We shall begin by

identifying a set of spinors on CP3 that are uncharged under the SU(2) on which the NAT-

duality is performed.

C.1 A SU(2) T-duality invariant Killing spinor on AdS4 × CP3

We express the metric of ABJM in terms of the vielbein basis of eq. (A.3). Supersymmetry

is preserved in type IIA when the variations of the dilatino and gravitino vanish. For ABJM

which has a constant dilaton and zero Romans mass these constraints are

δλ =
eφ

8

(
3

2
/F 2Γab(iσ2) +

1

4!
/F 4(σ1)

)
ε = 0, (C.1)

δΨµ = Dµε+
eφ

8

(
1

2
/F 2Γab(iσ2) +

1

4!
/F 4(σ1)

)
Γµε = 0,

where Dµε = (∂µ + 1
4ωµ,abΓ

ab)ε. Specifically we have

1

2
/F 2 = −2k

L2
(Γ16 + Γ23 + Γ45),

1

4!
/F 4 =

6k

L2
ΓAdS4 , (C.2)

and

ωx
µρ =

2

L
ex

µ
, ω12 = −ω36 =

tan ζ

L
e2, ω13 = ω26 =

tan ζ

L
e3

ω14 = −ω56 = −cot ζ

L
e4, ω15 = ω46 = −cot ζ

L
e5, ω16 = −2 cot 2ζ

L
e6, (C.3)

ω23 =
1

L
(−2 cot θ1 sec ζe3 + tan ζe6), ω45 =

1

L
(−2 cot θ1 sec ζe3 + (cot ζ + 2 tan ζ)e6).

Inserting the fluxes into the variation of the dilatino and manipulating leads to(
Γ2345 + Γ16(Γ23 + Γ45)

)
ε = ε. (C.4)

This constraint preserves a maximum of 24 real supercharges, however one finds that such

a Killing spinor, which also solves the gravitino variation, must depend on the SU(2)

directions [11]. Here we take a different approach and impose the projection

Γ2345ε = ε, (C.5)

which preserves only half the supercharges. Turning attention to the gravitino variation,

one finds that the components along the AdS4 directions give

Dµε+
1

L
ΓAdS4Γµ(σ1)ε, (C.6)

which is a standard Killing spinor equation for AdS4 which one can solve without any

constraint.
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Using the projection or eq. (C.5) it is possible to show that the gravitino variation

along the CP3 directions reduce to a differential equation and an additional projection

∂ζε+ Γ6(iσ2)ε = 0, (C.7)

Γ1456ε = −
(

cos 2ζ + sin 2ζΓ6(iσ2)

)
ε. (C.8)

These are solved by

ε = e−Γ6(iσ2)ε0 (C.9)

where ε0 is a spinor which depends only on the AdS4 coordinates and obeys

Γ2345ε0 = −Γ1456ε0 = ε0. (C.10)

Thus we have found a Killing spinor preserving 8 real supercharges which gives N = 2

supersymmetry in 3d. This is the most general spinor which is independent of the SU(2)

directions (in the prefered frame) and so [13] informs us that 8 supercharges are preserved

under a SU(2) NAT duality transformation.

As the solution is a direct product and we know that there are 4 independent Killing

spinors preserved by AdS4, we must have 2 preserved on CP3. On the other hand the AdS4

factor and supersymmety preserved by the spinor imply that we are describing a subsector

of ABJM with U(1) R-symmetry. The Killing spinors should be invariant under the action

of this U(1). Indeed we can impose an additional projection

Pαε = Γ6(iσ2)ε, Pα = Γ3(− cosαΓ4 + sinαΓ5) (C.11)

where α is a constant which parametrizes the U(1). Notice that if one defines two spinors

such that Pα1χα1 = Γ6(iσ2)χα1 and Pα2χα2 = Γ6(iσ2)χα2 hold, then we have χ†α1χα2 = 0

when α1 − α2 = π, so we are still describing N = 2 supersymmetry.

C.2 A U(1) of SU(3)-structures on CP3

We know the 6d Killing spinors of ABJM define an SU(3)-structure [58], so the internal

spinors η1
+ and η2

+ must match up to a phase. Specifically we define

η1
+ = ei

θ0
2 η+, η2

+ = e−i
θ0
2 η+. (C.12)

The projective constraints in 6d become

γ1456η+ = −
(

cos 2ζ + P̂α sin 2ζ

)
η+, γ2345η+ = η+, P̂αη+ = γ6η−, (C.13)

where P̂α = γ3(− cosαγ4+sinαγ5). These are still a little complicated, to get to a canonical

frame we first rotate in γ4, γ5, and then γ3, γ4 such that P̂α = −γ̃34 and γ1456η+ = −η+.

This leads to new vielbeins which we express in terms of eq. (A.3) as

ẽa = ea, a = 1, 2, 6,

ẽ3 = cos 2ζe3 + sin 2ζ(− cosαe4 + sinαe5),

ẽ4 = sin 2ζe3 + cos 2ζ(cosαe4 − sinαe5),

ẽ5 = sinαe4 + cosαe5. (C.14)
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With respect to this basis we have

γ̃16η+ = γ̃32η+ = γ̃45η+ = +iη+, γ̃346η+ = −η−, (C.15)

and so the SU(3)-structures are given by the forms

Jα = ẽ1 ∧ ẽ6 + ẽ3 ∧ ẽ2 + ẽ4 ∧ ẽ5, (C.16)

Ωhol,α = −i(ẽ1 + iẽ6) ∧ (ẽ3 + iẽ2) ∧ (ẽ4 + iẽ5).

The forms satisfy eq. (B.5) for any constant α provided

θ+ = θ0 =
3π

2
, θ− = 0, e2A =

L2

4
. (C.17)

One should note that if we take (J0,Ωhol,0) we can generate the whole U(1) again by sending

ψ → ψ− α, inside the left invariant 1-forms ωi. This is what we expect since the isometry

∂ψ gives the geometric realisation of the U(1) subgroup of the R-symmetry of ABJM.

C.3 A U(1) of SU(2)-structures in the non-Abelian T-dual

We would now like to find the G-structure and Killing spinors of the geometry after per-

forming the SU(2) isometry non-Abelian T-duality. Fortunately we can exploit a map for

the SU(2) transformation of the pure spinors that was proposed in [6]

Ψ̂± = Ψ∓Ω−1
SU(2), (C.18)

where in general, in the frame of eq. (A.3)

ΩSU(2) =
1√

1 + ζ2
a

Γ(10)

(
− Γ456 +

3∑
a=1

ζaΓ
a+3

)
, (C.19)

for ζa defined as in [5], which for our parametrisation of ABJM specifically is

ζ1 =
4

L2 cos ζ sin2 ζ
y1 cos ξ, ζ2 =

4

L2 cos ζ sin2 ζ
y1 sin ξ, ζ3 =

4

L2 sin2 ζ
y2. (C.20)

Although eq. (C.18) will give us the pure spinors in type IIB, it is still instructive to study

the MW Killing spinors. The action of the NAT duality transformation on this is given

by [13]

ε̂1 = ε1, ε̂2 = ΩSU(2) ε2, (C.21)

which corresponds to the following 6d spinors

η̂1
+ = ei

3π
4 η+, (C.22)

η̂2
+ = −i e−i

3π
4

[
i

cos 2ζγ̃1 + ζ̃1γ̃
4 + ζ̃2γ̃

5 + ζ3γ̃
6

√
1 + ζaζa

η− +
sin 2ζ√
1 + ζaζa

η+

]
,

with the spinors on AdS4 unchanged. Here we use the frame of eq. (C.14), but with dual

vielbeins, have made use of the projections and defined

ζ̃1 =
4

L2 cos ζ sin2 ζ
y1 cos(ξ + α), ζ̃2 =

4

L2 cos ζ sin2 ζ
y1 sin(ξ + α). (C.23)
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Here we see that α only appears in the combination ξ + α, which indicates that ∂ξ plays

the role of the U(1) R-symmetry in the NAT dual solution, indeed this can be confirmed

by computing the Kosmann derivative along ∂ξ.

The spinors in eq. (C.22) actually define a dynamical SU(2) structure, which means

η̂1
+ and η̂2

+ are not globally parallel and the angle between them is point dependent. We

can simplify the expression for η̂2
+ considerably with further rotations of the vielbein basis.

There is an optimum frame, in which all components of the SU(2)-structure are relatively

simple. The vielbeins are given in this frame by

ê1 =
1

4L3 sin3 ζ cos ζ
√

∆q

(
L4 sin2 ζ sin 4ζ − 32(y1dy1 + y2dy2)

)
, (C.24)

ê2 =
1

4L3 sin3 ζ cos ζ
√

∆p

√
∆q

[
cos ζ

(
sin 2ζ

(
L4 sin2 ζ∆pdθ − 32y2

1 sin 2(ξ + α) sin θdφ
)

− 128y1y2 cos(ξ + α)dζ

)
− 64y1 cos(ξ + α) sin ζ cos 2ζdy2

]
,

ê3 =
1

2L3 sin2 ζ cos ζ
√

∆0

√
∆p

[
cos2 ζ

(
32y1y2 cos(ξ + α)dξ + 32y2 sin(ξ + α)dy1

+
(
32y1y2 cos(ξ + α) cos θ + L4∆0 cos 2ζ sin2 ζ sin θ

)
dφ

)
− 32y1 sin(ξ + α)dy2

]
,

ê4 =
2

L5 sin3 ζ cos ζ
√

∆0

√
∆p

√
∆q

[
cos ζ

(
y1 sin(ξ + α)

(
64y2

1 cos2(ξ + α) + L4 sin2 ζ∆p

)
dξ

+ cos(ξ + α)
(
64y2

1 sin2(ξ + α)dy1 + 64y1y2dy2 − L4∆p sin2 ζdy1

)
+ L4y1∆q sin(ξ + α) sin2 ζ cos θdφ

)
− 2L4y1∆0 cos(ξ + α) cos 2ζ sin ζdζ

]
,

ê5 = − 2

L sin2 ζ cos ζ
√

∆p

[
2y1 sin(ξ + α)dζ − y2 sin 2ζ cos ζ2 sin θdφ

+
1

4
sin 4ζ

(
sin(ξ + α)dy1 + y1 cos(ξ + α)

(
dξ + cos θdφ

))]
ê6 = − 2

L sin2 ζ cos ζ
√

∆q

[
cos 2ζ sin ζdy2

+ 2 cos ζ

(
y2dζ + y1 cos ζ sin ζ

(
cos(ξ + α)dθ + sin(ξ + α) sin θdφ

))]
,

where

∆0 = 1 + ζ2
a , ∆q = cos2 2ζ + ζ2

a , ∆p = ∆q − sin2 2ζ̃ζ2
1 . (C.25)

In this basis the action of NAT duality on the 6d spinors is simply

η̂1 = ei
θ0
2 η+, η̂2

+ = −e−i
θ0
2
[
κ‖η+ + iκ⊥γ̂

1η−
]

(C.26)
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where

κ‖ =
sin 2ζ√
1 + ζaζa

, κ⊥ =

√
cos 2ζ + ζaζa

1 + ζaζa
(C.27)

and κ2
‖+κ

2
⊥ = 1. The projections the original spinor obeys are most succinctly expressed as

γ̂2345η+ = η+, γ̂1456η+ = −(κ⊥ − κ‖γ̂34)η+, (C.28)

in the basis where γ(7)η+ = η+ as before. The U(1)’s worth of SU(2)-structure is given by

the following forms

zα = ê1 + iê6,

jα = (κ⊥ê
3 − κ‖ê4) ∧ ê2 + (κ⊥ê

4 + κ‖ê
3) ∧ ê5,

ωhol,α = −i
(
(κ⊥ê

3 − κ‖ê4) + iê2
)
∧
(
(κ⊥ê

4 + κ‖ê
3) + iê5

)
, (C.29)

which satisfy the supersymmetry conditions of eq. (B.5) for any constant α provided

θ+ = 0, θ− = θ0 =
3π

2
, e2A =

L2

4
. (C.30)

We could take the intersection of the two linearly independent SU(2) structures defined for

α = 0 and α = π, and define an identity structure. However, the supersymmetry conditions

of such an object are absent from the literature at present and deriving them is outside

the scope of this work.

C.4 Killing spinors in M-theory

Before we can define the M-theory Killing spinor, we must first derive the MW Killing

spinors in type IIA after an additional T-duality is performed. As we want to make

contact with [45] we need to work with the two linearly independent spinors in 6d. These

are given by

π1
+ = ei

θ0
2 π+, π2

+ = e−i
θ0
2 π+, π̃1

+ = ei
θ0
2 π̃+, π̃2

+ = e−i
θ0
2 π̃+, θ0 =

3π

2
(C.31)

and are such that

γ1456π+ = −
(

cos 2ζ − sin 2ζγ34
)
π+, γ2345π+ = π+, γ246π+ = −π−

γ1456π̃+ = −
(

cos 2ζ + sin 2ζγ34
)
π̃+, γ2345π̃+ = π̃+, γ246π̃+ = π̃−, (C.32)

in the frame of eq. (A.3). The independent 10d MW spinors ε1,2 and ε̃1,2 are then con-

structed in the obvious way from eq. (B.3), with η → π and using the same spinors on AdS4.

We must act on these spinors first with ΩSU(2), which in this frame is as in eq. (C.19), then

with ΩU(1), which gives the transformation of the spinor under the Abelian T-duality [55].

In the frame of eqs. (A.3), (A.8) this is most succinctly expressed as

ΩU(1) =
1√

∆0

√
Ξ0

sin ζ cos θΓ(10)

[(
− ζ2 + ζ1ζ3

)
Γ4 +

(
ζ1 + ζ2ζ3

)
Γ5 −

(
ζ2

1 + ζ2
2

)
Γ6

]
−
√

∆0√
Ξ0

sin θΓ(10)Γ3.
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We take the 10d MW Killing spinors in IIA after the NAT-T duality transformation to be

ˆ̂ε1 = ε1, ˆ̂ε2 = ΩU(1)ΩSU(2)ε2, (C.33)

with an equivalent expression with ε→ ε̃, which means that the new 6d Killing spinors are

given by

ˆ̂π1
+ = ei

θ0
2 π+, ˆ̂π2

+ = −e−i
θ0
2

(
κ̂‖π+ + κ̂⊥Fπ−

)
,

ˆ̂
π̃1

+ = ei
θ0
2 π̃+,

ˆ̂
π̃2

+ = +e−i
θ0
2

(
κ̂‖π̃+ + κ̂⊥F π̃−

)
, (C.34)

where

κ̂‖=
sin 2ζ sin θζ2√

Ξ0
, κ̂⊥ =

√
1− κ̂2

‖,

F=
i√

Ξ0−sin2 2ζ sin2 θ ζ2
2

(
sin ζ cos θ

(
ζ2γ

2−ζ1γ
3
)
−sin θ

(
cos 2ζ ζ2γ

1−γ5−ζ3γ
4+ζ1γ

6
))
.

(C.35)

Clearly eq. (C.34) supports a U(1) of dynamical SU(2)-structures, as was the case in type-

IIB, which we will not explicitly derive.

We are know ready to construct the two independent M-theory Killing spinors. These

can be expressed in terms of the spinors in IIA as

η1 = e−Φ/6
(
ε1 + ε2), η2 = e−Φ/6

(
ε̃1 + ε̃2). (C.36)

In the conventions of [45] the M-theory spinors are

ηi = e∆̃/2

(
ψi+ ⊗ χi +

(
ψi+
)c ⊗ χci), (C.37)

where e
∆̃
2 =e

Ã
2
−Φ

6 and e2Ã is a modified warp factor of AdS4 in IIA such that Ricci(AdS4) =

−12g(AdS4). Thus if we identify the AdS4 spinors of IIA with those of eq. (C.37) we see that

χ1 =
1√
2

(
ˆ̂π1

+ + ˆ̂π2
−
)
, χc1 =

1√
2

(
ˆ̂π1
− + ˆ̂π2

+

)
,

χ2 =
1√
2

(ˆ̂
π̃1

+ +
ˆ̂
π̃2
−
)
, χc2 =

1√
2

(ˆ̂
π̃1
− +

ˆ̂
π̃2

+

)
, (C.38)

which clearly satisfy χ̄1χ1 = χ̄2χ2 = 1, and from these one can construct spinors of charge

±2 under the U(1) R-symmetry

χ± =
1√
2

(
χ1 ± χ2

)
. (C.39)

It is then simply a matter of plugging the χ± of this section into the spinor bi-linears in

appendix B of [45], and rotating the frame to reproduce the results of section 4.2. Note that

the frame used in this section needs to be rotated as in eq. (A.14) to reach the vielbein

basis where flat directions 2456 may be identified with G1,2,3,4 of eq. (3.2) and the rest

with eq. (A.3).
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N = (0, 4) supersymmetry, JHEP 08 (2015) 121 [arXiv:1507.02659] [INSPIRE].

[19] A. Passias, A note on supersymmetric AdS6 solutions of massive type IIA supergravity,

JHEP 01 (2013) 113 [arXiv:1209.3267] [INSPIRE].

[20] F. Apruzzi, M. Fazzi, A. Passias, D. Rosa and A. Tomasiello, AdS6 solutions of type-II

supergravity, JHEP 11 (2014) 099 [Erratum ibid. 05 (2015) 012] [arXiv:1406.0852]

[INSPIRE].

[21] H. Kim, N. Kim and M. Suh, Supersymmetric AdS6 Solutions of Type IIB Supergravity,

arXiv:1506.05480 [INSPIRE].

[22] N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string

dynamics, Phys. Lett. B 388 (1996) 753 [hep-th/9608111] [INSPIRE].

[23] D.R. Morrison and N. Seiberg, Extremal transitions and five-dimensional supersymmetric

field theories, Nucl. Phys. B 483 (1997) 229 [hep-th/9609070] [INSPIRE].

[24] K.A. Intriligator, D.R. Morrison and N. Seiberg, Five-dimensional supersymmetric gauge

theories and degenerations of Calabi-Yau spaces, Nucl. Phys. B 497 (1997) 56

[hep-th/9702198] [INSPIRE].

[25] A. Brandhuber and Y. Oz, The D4–D8 brane system and five-dimensional fixed points, Phys.

Lett. B 460 (1999) 307 [hep-th/9905148] [INSPIRE].

[26] O. Bergman and D. Rodriguez-Gomez, 5d quivers and their AdS6 duals, JHEP 07 (2012)

171 [arXiv:1206.3503] [INSPIRE].

[27] O. Aharony and A. Hanany, Branes, superpotentials and superconformal fixed points, Nucl.

Phys. B 504 (1997) 239 [hep-th/9704170] [INSPIRE].

[28] O. Aharony, A. Hanany and B. Kol, Webs of (p, q) five-branes, five-dimensional field theories

and grid diagrams, JHEP 01 (1998) 002 [hep-th/9710116] [INSPIRE].

[29] O. DeWolfe, A. Hanany, A. Iqbal and E. Katz, Five-branes, seven-branes and

five-dimensional En field theories, JHEP 03 (1999) 006 [hep-th/9902179] [INSPIRE].

[30] A. Rota and A. Tomasiello, AdS4 compactifications of AdS7 solutions in type-II supergravity,

JHEP 07 (2015) 076 [arXiv:1502.06622] [INSPIRE].

[31] D. Gaiotto and A. Tomasiello, Holography for (1, 0) theories in six dimensions, JHEP 12

(2014) 003 [arXiv:1404.0711] [INSPIRE].

[32] Y. Terashima and M. Yamazaki, SL(2,R) Chern-Simons, Liouville and Gauge Theory on

Duality Walls, JHEP 08 (2011) 135 [arXiv:1103.5748] [INSPIRE].

[33] Y. Terashima and M. Yamazaki, Semiclassical Analysis of the 3d/3d Relation, Phys. Rev. D

88 (2013) 026011 [arXiv:1106.3066] [INSPIRE].

[34] T. Dimofte, D. Gaiotto and S. Gukov, Gauge Theories Labelled by Three-Manifolds,

Commun. Math. Phys. 325 (2014) 367 [arXiv:1108.4389] [INSPIRE].

[35] T. Dimofte, D. Gaiotto and S. Gukov, 3-Manifolds and 3d Indices, Adv. Theor. Math. Phys.

17 (2013) 975 [arXiv:1112.5179] [INSPIRE].

[36] J. Yagi, 3d TQFT from 6d SCFT, JHEP 08 (2013) 017 [arXiv:1305.0291] [INSPIRE].

– 29 –

http://dx.doi.org/10.1007/JHEP05(2015)062
http://arxiv.org/abs/1503.07527
http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.07527
http://dx.doi.org/10.1007/JHEP08(2015)121
http://arxiv.org/abs/1507.02659
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.02659
http://dx.doi.org/10.1007/JHEP01(2013)113
http://arxiv.org/abs/1209.3267
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.3267
http://dx.doi.org/10.1007/JHEP11(2014)099
http://arxiv.org/abs/1406.0852
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.0852
http://arxiv.org/abs/1506.05480
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.05480
http://dx.doi.org/10.1016/S0370-2693(96)01215-4
http://arxiv.org/abs/hep-th/9608111
http://inspirehep.net/search?p=find+EPRINT+hep-th/9608111
http://dx.doi.org/10.1016/S0550-3213(96)00592-5
http://arxiv.org/abs/hep-th/9609070
http://inspirehep.net/search?p=find+EPRINT+hep-th/9609070
http://dx.doi.org/10.1016/S0550-3213(97)00279-4
http://arxiv.org/abs/hep-th/9702198
http://inspirehep.net/search?p=find+EPRINT+hep-th/9702198
http://dx.doi.org/10.1016/S0370-2693(99)00763-7
http://dx.doi.org/10.1016/S0370-2693(99)00763-7
http://arxiv.org/abs/hep-th/9905148
http://inspirehep.net/search?p=find+EPRINT+hep-th/9905148
http://dx.doi.org/10.1007/JHEP07(2012)171
http://dx.doi.org/10.1007/JHEP07(2012)171
http://arxiv.org/abs/1206.3503
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.3503
http://dx.doi.org/10.1016/S0550-3213(97)00472-0
http://dx.doi.org/10.1016/S0550-3213(97)00472-0
http://arxiv.org/abs/hep-th/9704170
http://inspirehep.net/search?p=find+EPRINT+hep-th/9704170
http://dx.doi.org/10.1088/1126-6708/1998/01/002
http://arxiv.org/abs/hep-th/9710116
http://inspirehep.net/search?p=find+EPRINT+hep-th/9710116
http://dx.doi.org/10.1088/1126-6708/1999/03/006
http://arxiv.org/abs/hep-th/9902179
http://inspirehep.net/search?p=find+EPRINT+hep-th/9902179
http://dx.doi.org/10.1007/JHEP07(2015)076
http://arxiv.org/abs/1502.06622
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.06622
http://dx.doi.org/10.1007/JHEP12(2014)003
http://dx.doi.org/10.1007/JHEP12(2014)003
http://arxiv.org/abs/1404.0711
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.0711
http://dx.doi.org/10.1007/JHEP08(2011)135
http://arxiv.org/abs/1103.5748
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.5748
http://dx.doi.org/10.1103/PhysRevD.88.026011
http://dx.doi.org/10.1103/PhysRevD.88.026011
http://arxiv.org/abs/1106.3066
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.3066
http://dx.doi.org/10.1007/s00220-013-1863-2
http://arxiv.org/abs/1108.4389
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.4389
http://dx.doi.org/10.4310/ATMP.2013.v17.n5.a3
http://dx.doi.org/10.4310/ATMP.2013.v17.n5.a3
http://arxiv.org/abs/1112.5179
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.5179
http://dx.doi.org/10.1007/JHEP08(2013)017
http://arxiv.org/abs/1305.0291
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.0291


J
H
E
P
1
0
(
2
0
1
5
)
0
0
4

[37] S. Lee and M. Yamazaki, 3d Chern-Simons Theory from M5-branes, JHEP 12 (2013) 035

[arXiv:1305.2429] [INSPIRE].

[38] C. Cordova and D.L. Jafferis, Complex Chern-Simons from M5-branes on the Squashed

Three-Sphere, arXiv:1305.2891 [INSPIRE].

[39] F. Benini, F. Canoura, S. Cremonesi, C. Núñez and A.V. Ramallo, Backreacting flavors in
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