
J
H
E
P
0
4
(
2
0
1
5
)
1
0
0

Published for SISSA by Springer

Received: January 14, 2015

Accepted: March 26, 2015

Published: April 20, 2015

N = 2 super-EYM coloured black holes from

defective Lax matrices

Patrick Meessena and Tomás Ort́ınb

aHEP Theory Group, Departamento de F́ısica, Universidad de Oviedo,

Avda. Calvo Sotelo s/n, E-33007 Oviedo, Spain
bInstituto de F́ısica Teórica UAM/CSIC,
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1 Introduction

In refs. [1, 2] the structure of the supersymmetric solutions to N = 2, d = 4 supergravity

coupled to vector multiplets where a subset of the isometries of the scalar manifold is

gauged [3, 4], a theory we shall refer to as N = 2, d = 4 Super-Einstein-Yang-Mills, was

uncovered. As far as said characterisation is concerned, the resulting structure is grosso

modo the same as in the ungauged case, see e.g. refs. [5, 6], but for two details: the seed

functions IΛ, IΛ are in general not harmonic functions on R
3. More to the point, some of the

seed functions (the magnetic ones IΛ that have indices Λ in the non-Abelian gauge group

and are denoted by Φ) must satisfy the non-Abelian1 Bogomol’nyi equation on R
3, i.e.

⋆ F = DΦ , (1.1)

whereas the other half (the electric ones IΛ) must satisfy an involved equation whose

explicit form depends on the knowledge of the solutions to eq. (1.1).

Some supersymmetric, analytical spherically symmetric solutions to various models

were constructed and analysed in refs. [1, 2, 7] and, recently, some multi-object solutions

1In the ungauged case (and in the ungauged directions) the seed functions also have to obey the Bo-

gomol’nyi equation, but in its Abelian version. A solution (gauge field) is guaranteed to exist for any

choice of harmonic seed functions and, for this reason, the presence of the Abelian Bogomol’nyi equation is

seldom mentioned in the literature. In the non-Abelian case, however, one cannot simply give a set of seed

functions satifying certain conditions: it is necessary to provide the accompanying gauge field to determine

completely the solution.
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were presented in ref. [8]. Apart from the globally regular solutions describing ’t Hooft-

Polyakov monopoles in supergravity, the most elusive and intriguing solutions in those

references describe an SU(2) black hole whose non-Abelian gauge fields have no asymp-

totic colour charge and the physical scalars have no asymptotic v.e.v. The near-horizon

solution, however, is completely specified in terms of the colour charge of the gauge fields

on the horizon, which does not vanish and contributes to the Bekenstein-Hawking entropy.

This behaviour is reminiscent of the Bartnik-McKinnon particle solution to SU(2) Einstein-

Yang-Mills (EYM) theory [9], which is a discrete family of spherically symmetric, globally

regular solutions with a YM connection that has no asymptotic colour charge. The Bartnik-

McKinnon solutions were generalised to black-hole solutions in refs. [10–12] and they are

given the, perhaps counter-intuitive, name of coloured black holes and, accordingly, the elu-

sive solution mentioned above is called an N = 2 Super-EYM (SEYM) coloured black hole.

Observe that the Bartnik-McKinnon particle and their generalisations are only known

numerically, and analytical examples are hard to come by. As far as we know, apart from

the sugra coloured black hole of refs. [2, 7], the only other analytical coloured black hole

was recently constructed by Fan & Lü [13] and is a solution to conformal gravity coupled

to SU(2) YM. This last coloured black hole, like the coloured black holes of EYM, is “pure”

in the sense that for their existence no other gauge field needs to be turned on. This is

in contradistinction to the coloured black hole in supergravity where the regularity of the

event horizon demands an additional Abelian gauge field to be active. Even so, it is, within

the class of theories and (supersymmetric) solutions considered, the closest one can get to

a coloured black hole.

Seeing the interesting properties of the coloured black holes, however, it would be

interesting to have more analytical examples; in the N = 2, d = 4 case we are quite

fortunate as the main ingredient of their construction is the Bogomol’nyi equation and as

was shown by Leznov & Saveliev in ref. [14], the SU(N) Bogomol’nyi equation, under the

assumption of (so-called maximal) spherical symmetry, is an integrable system related to

the SU(N) Toda molecule. The general solution of the SU(N) Toda molecule is known [15–

18] and can be derived from a Lax pair representation for the relevant equations, with a

Lax matrix that is assumed to be diagonalisable. As we will see, the solutions to the

spherically symmetric Bogomol’nyi equations that are needed to construct coloured black

holes are associated to a Lax matrix that is defective or, said differently, manifestly non-

diagonalisable. The ones we are after can be obtained from the generic solutions as limiting

cases (see e.g. ref. [19]) or by the integration algorithms presented in refs. [20, 21] and [22].

Here we will adapt Koikawa’s derivation of the solution [15] to the case of a defective Lax

matrix: this is done by relating the Lax pair to the standard Lax evolution equation on

the generalised eigenvectors of the defective Lax matrix. The generalised eigenvectors are

the vectors with respect to which the Lax matrix takes on the Jordan block form and are

natural objects to use when the Lax matrix is defective. For the small N SU(N) solutions

we are going to construct (SU(2) and SU(3)) this gives a convenient and easy to understand

way of constructing the solutions, clarifying the general procedure of refs. [20, 21] and [22].

Once we have constructed the relevant solutions of the SU(N) Bogomol’nyi equations,

we will use them to construct bona fide coloured black hole solutions to N = 2, d = 4
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SEYM theories. In this case we will limit ourselves to the construction of coloured black

holes in the CP
8
and the C-magic models, both of which allow for an SU(3) gauging. In

both cases, we will see that, as in the SU(2) coloured black holes presented in refs. [2, 7, 8],

there is no major obstruction in their construction. In fact, it should be more or less clear

that coloured black-hole solutions abound in N = 2, d = 4 SEYM theories.

The outline of this article is as follows: in section 2 we shall discuss the form of the

gauge connections and Higgs fields compatible with spherical symmetry, relate the SU(N)

Bogomol’nyi equation under the assumption of spherical symmetry to the SU(N) Toda

molecule and give the Lax pair. We will then discuss the appropriate boundary condi-

tions for the coloured solutions we are interested in and argue that they correspond to a

defective Lax matrix, i.e. to a non-diagonalisable matrix. In section 3 we will discuss the

general mechanism needed for extracting the solutions and apply it to the cases of SU(2)

and SU(3). In section 4.2 we will then embed the SU(3) solution in the SU(3)-gauged

CP
8
and C-magic models and analyse the gravitational solution. Section 5 contains some

conclusions and comments.

2 Spherically symmetric solutions to the Bogomol’nyi equations

The derivation is best done using Hermitean generators, which means that we use the

definitions

DΦ = dΦ− i [A,Φ] , F = dA− i A ∧ A , (2.1)

where A and Φ are in su(n + 1)’s fundamental representation; for convenience we have

taken the coupling constant to be one.

In the radial gauge, i.e. in the gauge where the radial component of the gauge con-

nection vanishes, the form of the fields compatible with maximal spherical symmetry are

given by (see e.g. refs. [23–26])

Φ =
1

2
diag (φ1(r) , φ2(r)− φ1(r) , . . . , φn(r)− φn−1(r) , −φn(r)) , (2.2)

A = J3 cos(θ)dϕ+
i

2

[

C − C†
]

dθ +
1

2

[

C + C†
]

sin(θ)dϕ , (2.3)

where

J3 =
1

2
diag(n, n− 2, . . . , 2− n,−n) , (2.4)

corresponds to a spin n/2 irrep of su(2) and is the maximal embedding of su(2) into

su(n+ 1); C is the real upper-triangular matrix

C =





















0 a1(r) 0 · · · 0

0 0 a2(r) · · · 0
...

...
...

...
...

0 0 · · · an−1(r) 0

0 0 · · · 0 an(r)

0 0 · · · 0 0





















. (2.5)
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A small calculation using the fact that [J3, C] = C, then shows that the Bogomol’nyi

equation (1.1) reduces to the following system

∂rC = [ Φ , C ] , (2.6)

2r2∂rΦ =
[

C , C†
]

− 2J3 . (2.7)

The starting point of Koikawa’s construction are eqs. (2.6) and (2.7). First, one rede-

fines2

Φ = Ψ+ J3/r , C = rF , (2.8)

turning eqs. (2.6) and (2.7) into

Ḟ = [ Ψ , F ] , (2.9)

2Ψ̇ =
[

F , F T
]

, (2.10)

where clearly ΨT = Ψ = Ψ† and an overdot means derivative with respect to r.

After this redefinition, the link to the Toda molecule can be easily established [17]: in

terms of the components ψi of Ψ and fi of F , the above equations read

ψ̇i = f2
i , 2ḟi = fi Aijψj , (2.11)

where A is su(n+ 1)’s Cartan matrix. Defining the new variables Ti(r) by

fi = exp

(

−1

2
AijTj

)

, (2.12)

we see from the f -equations that ψi = −Ṫi. Upon substitution into the ψ-equation we find

that the Ti variables satisfy the equations

T̈i = − exp (−AijTj) , (2.13)

which are known as the equations of motion of the SU(n+ 1) Toda molecule.

The second step in Koikawa’s construction [15] is the definition of the new objects L,M

from Ψ and F , which form a Lax pair, i.e.

L ≡ Ψ+ i
2

(

F + F T
)

M ≡ i
2

(

F T − F
)











−→ L̇ = [ M , L ] , (2.14)

The existence of a Lax pair immediately implies that the quantities (“charges”) C(k) ≡
Tr

(

L
k
)

are constants of motion. Observe that even though L is symmetric and complex,

whereas M is purely imaginary and anti-symmetric, the conserved charges C(k) are in fact

real functions because L and M satisfy the relations [25]

L
∗ = eiπJ3 L e−iπJ3 , M

∗ = eiπJ3 M e−iπJ3 . (2.15)

2F should not be confused with the gauge field strength F.
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We are interested in Higgs fields that behave asymptotically as

Φ ∼ Φ∞ +
P

r
+O(r−2) , (2.16)

where P is the colour charge and one can take [Φ∞,P] = 0.3 According to eq. (2.10), in

order for the above asymptotic behaviour to be possible we must have4

F ∼ S

r
with

[

S, ST
]

= 2 ( J3 − P ) . (2.17)

Eq. (2.9) then implies that

[ Φ∞ , S ] = 0 and [ P , S ] = 0 . (2.18)

Defining then a coloured solution to the Bogomol’nui equation as one for which the colour

charge is zero, i.e. P = 0, we see from eq. (2.17) that s2i = i(n+1− i), so that S has no van-

ishing entries; this immediately implies by virtue of eq. (2.18) that Φ∞ = 0. The conclusion

is that if, in the maximally spherically symmetric Ansatz, we want to describe coloured so-

lutions, defined as solutions having P = 0, then we must look at the class of solutions with

Φ∞ = 0. Observe, however, that it is possible to have solutions with Φ∞ = 0 but P 6= 0.

For the conserved charges C(k) we see that

C(k) = lim
r→∞

Tr
(

L
k
)

= Tr
(

Φk
∞

)

coloured solutions−−−−−−−−−−−−−−−→ C(k) = 0 . (2.19)

Even though L is a complex symmetric matrix it allows for eigenvalues and if we take

into account the fact that the characteristic polynomial det(L−λ Id) can be expanded as a

polynomial in λ and the C(k), we reach the conclusion that a coloured solution is such that all

eigenvalues are zero: this is only possible for non-trivial solutions if L is not diagonalisable,

whence an L corresponding to a coloured solution must be a defective matrix, i.e. one that

can be brought by an r-dependent similarity transformation to a Jordan block form with

only zero eigenvalues.

Observe that for our purposes we also might want to impose the condition that around

r = 05 we want the solution to be Coulombic, meaning that

lim
r→0

Φ ∼ Q

r
+Φ0 +O(r) , (2.20)

as any higher order singularity would (probably) be uncompensable in an N = 2 super-

gravity setting. The solutions that we have constructed, however, automatically have this

behaviour.

3We can always perform a constant gauge transformation to diagonalise Φ∞ and an r-dependent one to

diagonalise P.
4In components this reads fi ∼ si/r for some constants si.
5This is the location of the would-be event horizon in the full gravitational solutions built from these

solutions of the Bogomol’nyi equation.
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3 Coloured solutions from defective Lax matrices

The Lax equation (2.14) is the integrability condition of the so-called Lax equations6

L~v = λ ~v , (3.1)

~̇v = M ~v , (3.2)

where λ is r-independent. As was said before, the matrix L is symmetric but complex and

as such it need not be diagonalisable. But since this possibility is not excluded either, let

us suppose first that all the eigenvalues7 of L are real and different [15]. This means that

there are n eigenvalues λi (i = 1, . . . , n) and n corresponding eigenvectors ~vi, which due to

eq. (3.2) can be taken to be orthonormal, ~vi · ~vj = δij , and complete Id =
∑

i ~vi~v
T
i . We

can then immediately write down the spectral decomposition of L

L =
∑

i

λi ~vi~v
T
i , (3.3)

and express the resolvent of L as

R(µ) ≡ (L− µ Id)−1 =
∑

i

~vi~v
T
i

λi − µ
. (3.4)

The Lax equations can be turned into n first order differential equations by projection.

Let us consider the SU(2) case with a basis {~e1, ~e2}, define xi ≡ ~e1 ·~vi and use the definitions

of L and M eqs. (2.14) to see that M12 = −L12. Whence, from eq. (3.2), we have that ẋi =

M12 ~e2 ·~vi = −L12 ~e2 ·~vi. Using these expressions in the projection of eq. (3.1) onto ~e1 we find

ẋi = L11xi − λi xi with L11 =
∑

j

λjx
2
j . (3.5)

By substituting xi = e−λir ai u(r), where ai is some constant, we see that the general

solution to eqs. (3.5) is given by

1

u2
= ℵ+

∑

j

a2j e−2λjr
completeness−−−−−−−−−−−−→ 1

u2
=

∑

j

a2j e−2λjr , (3.6)

where the completeness alluded to in the equation follows from the projection onto the 11-

direction of the completeness relation of the ~vi. Up to this point we can, by using eqs. (2.4)

and (2.14), deduce that

ψ1 = 2L11 = 2

∑

i λia
2
i e−2λir

∑

j a2j e−2λjr
. (3.7)

Even though it may seem that in order to construct the full solution one would have

to find all the components of the eigenvectors, this is not really needed: we can calculate

the 11-component of the resolvent, R11(µ), in two different ways, namely by projection of

6The vector ~v is r-dependent, but we refrain from writing ~v(r) for the ease of reading.
7As we are dealing with the SU(n+1) Bogomol’nyi equation, the sum of all the eigenvalues must be zero.
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the spectral representation in eq. (3.4) and also by using Cramer’s rule to invert the matrix

L − µId, given eq. (2.8). The comparison of these two expressions is enough to fix all the

components. We refer the interested reader to Koikawa’s article [15] for the final result.

As the reader will see, using the resolvent to fix the complete solution is especially easy for

the coloured solutions, at least for the low-n cases we are interested in.

In the case that the eigenvalues are degenerate we must distinguish between two cases:

the non-defective case and the defective case. In the non-defective case in which L can still

be diagonalised even though the eigenvalues are degenerate, a complete set of eigenvectors

does still exist and the above method can be applied.

In the defective case in which the matrix can be brought to a Jordan block form but

not a diagonal form, we need to introduce the so-called generalised eigenvectors: suppose

we are given an eigenvalue λ⋆ which corresponds to some k× k Jordan block;8 in this case

there is only one eigenvector ~v⋆ such that

L~v⋆ = λ⋆~v⋆ . (3.8)

We can, however, construct a basis for the complete eigenspace with generalised eigenvec-

tors ~w(m) where m = 1, . . . , k and ~w(k) ≡ ~v⋆ defined by the property

~w(m+ 1) = (L− λ⋆Id) ~w(m) ≡ N~w(m) , (3.9)

with the understanding that ~w(k + 1) = 0. This equation makes sense as the matrix N

restricted to the generalised eigenspace corresponding to the eigenvalue λ⋆ is nil-potent of

degree k, i.e.

N
k = 0 . (3.10)

The integrability condition of the evolution equation

~̇w(m) = M~w(m) , (3.11)

with the definitions (3.9) is nothing more than the Lax pair equation (2.14). Said differ-

ently: if we find a solution to the system formed by eqs. (3.9) and (3.11), we automatically

obtain a solution to the original equations (2.6) and (2.7).

The basis {~ω(m)} is by construction complete but the details vary with respect to the

non-degenerate case as, for example, ~w(k)· ~w(k) = 0,9 so that the relevant spectral represen-

tations will not be as simple as in eq. (3.3) and (3.4). First of all, since M is antisymmetric

the inner products of the generalised eigenvectors are r-independent, i.e.

∂r [~w(m) · ~w(n)] = 0 , whence ~w(m) · ~w(n) = ~w(m) · ~w(n)|r=0 . (3.12)

Second, one finds that ~w(m) · ~w(n) = ~w(m− 1) · ~w(n + 1) so this product only depends

on the sum of the indices m+ n. This, together with N~w(k) = 0, implies that

~w(m) · ~w(n) = 0 if m+ n > k + 1. (3.13)

8The generalisation to more Jordan blocks, even with the same eigenvalue, is straightforward, but we

refrain from describing it here in order not to clutter the equations with too many indices.
9The ~w(m) are complex.
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In fact, since eq. (3.9) determines ~w(m) (m 6= k) up to terms proportional to ~w(k) we can

arrange things such that

~w(m) · ~w(n) =
{

0 : m+ n 6= k + 1 ,

1 : m+ n = k + 1 .
(3.14)

Having deduced the relevant inner products of the generalised eigenvectors one can write

down the completeness relation on this eigenspace as

Id|λ⋆
=

k
∑

m=1

~w(k + 1−m)~w(m)T , (3.15)

and the (generalised) spectral representation of L reads

L|λ⋆
= λ⋆

k
∑

m=1

~w(k + 1−m)~w(m)T +
k

∑

m=2

~w(k + 2−m)~w(m)T . (3.16)

Finally, the restriction to this eigenspace of the resolvent R(µ) is

R(µ)|λ⋆
=

k
∑

n=1

(−1)n+1

(λ⋆ − µ)n

k
∑

m=n

~w(k + n−m)~w(m)T , (3.17)

Having set up the relevant algebraic structures, the deduction of the solutions follows

the same route as outlined above.

3.1 SU(2)’s coloured solution revisited

Given that the sum of all eigenvalues must be zero, there are two cases to be considered,

namely the non-degenerate case (λ1, λ2) = (−λ, λ) and (λ1, λ2) = (0, 0). The former was

treated in Koikawa’s article and we will focus on the latter, which must correspond to a

defective set-up with λ⋆ = 0 as otherwise we would be dealing with a trivial gauge field.

The only independent non-trivial conserved charge reads

C(2) =
1

2

(

ψ2
1 − f2

1

)

, (3.18)

which is more than enough to deduce that coloured solutions are such that ψ1 = ±f1,

from which the solution can be constructed immediately using eqs. (2.11). For illustrative

purposes, however, we will outline Koikawa’s construction anyway.

Since we are in the k = 2 case we have that L12 = i
2f1 = −M12. Then, the projection

of eq. (3.11) along ~e1 can be rewritten as

ẇ1(m) = −L12w2(m) . (3.19)

The construction equation (3.9) gives, for the r.h.s. of the above equations

L12w2(1) = −L11ω1(1) + ω1(2) ,

L12w2(2) = −L11ω1(2) ,
(3.20)

– 8 –
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and eq. (3.16) gives

L11 = (ω1(2))
2 . (3.21)

Then, introducing the abbreviations x ≡ ω1(2) and y = ω1(1), eqs. (3.19) take the form

ẋ = x3 , (3.22)

ẏ = x2y − x , (3.23)

whose solution is

x−2 = −2(r + b) , y = −(r + a) x(r) , (3.24)

where a and b are integration constants.

In this simple case the resolvent can be straightforwardly calculated to be

R(µ) =
−1

2µ2 − C(2)

(

2µ+ ψ1 if1
if1 2µ− ψ1

)

, (3.25)

and for a coloured solution we must have

R11(µ) = − 1

µ
− ψ1

2µ2
. (3.26)

On the other hand, from the spectral representation of the resolvent in eq. (3.17) we get

R11(µ) = −2xy

µ
− x2

µ2
. (3.27)

Comparing both expressions we first of all see that

1 = 2xy =
r + a

r + b
, (3.28)

whence b = a. Secondly we see that ψ1 = 2x2 = −(r + a)−1, which can be used to deduce

f1 from the constraint C(2) = 0.

The final ingredient in the construction is the imposition of the relevant regularity

conditions. In this case we just have to require the Higgs field to be regular on the interval

r ∈ (0,∞), which implies that a ≥ 0. In order to make contact with the solution in

refs. [2, 7] we redefine a = λ−1 and find

ψ1 = − λ

1 + λr
= ±f1

which by eq. (2.8) implies−−−−−−−−−−−−−−−−−−−−−−→ φ1 =
1

r(1 + λr)
. (3.29)

This solution corresponds to the coloured solution found by Protogenov in ref. [27] and

which was used in refs. [2, 7, 8] to construct coloured black hole solutions to various N = 2

EYM theories; the parameter λ is a hair parameter that doesn’t show up in the coloured

black hole’s asymptotic nor near-horizon behaviour.
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3.2 SU(3)’s coloured solutions

In the SU(3) case there are two coloured possibilities: a pure 3× 3 Jordan block or a 2× 2

Jordan block; this last case will be briefly treated at the end of this section, and will not

lead to a coloured solution.

The explicit forms for the conserved charges are

C(2) =
1

2

(

ψ2
1 − ψ1ψ2 + ψ2

2 − f2
1 − f2

2

)

, (3.30)

C(3) =
3

8

(

ψ1f
2
2 − ψ2f

2
1 + ψ2ψ

2
1 − ψ1ψ

2
2

)

, (3.31)

from which, unlike the SU(2) case, the coloured solutions are not too easy to deduce.

In the case that L corresponds to a 3× 3 Jordan block (so λ⋆ = 0) its spectral repre-

sentation reads

L = ~w(3)~w(2)T + ~w(2)~w(3)T whence
1

2
ψ1 = L11 = 2xy , (3.32)

where we defined x ≡ ~e1 · ~w(3), y ≡ ~e1 · ~w(2) and z ≡ ~e1 · ~w(1).
Making use of the same technique as in the foregoing section, we find the system of

equations

ẋ = 2x2y , (3.33)

ẏ = 2y2x− x , (3.34)

ż = 2xyz − y . (3.35)

This system can be solved by the Ansatz y = f(r)x , z = g(r)x. Upon this substitution,

the y-equation implies that f(r) = −(r + a) and the z-equation then implies that ġ = −f

whence g(r) = 1
2 [(r + a)2 + b]. The x-equation then implies that

1

x2
= 2

[

(r + a)2 + c
]

, (3.36)

from which we see that

ψ1 = −2
r + a

(r + a)2 + c
. (3.37)

In order to find the full solution we compute the 11-component of the resolvent in

eq. (3.17), which reads

R11 = −2xz + y2

µ
− 2xy

µ2
− x2

µ3
. (3.38)

Calculating the same component using Cramer’s rule we see that10

R11(µ) = − 1

µ
− ψ1

2µ2
− ψ1ψ2 + f2

2 − ψ2
2

4µ3
. (3.39)

10This can be easily derived using

det (L− µ) = −µ3 +
1

2
µ C(2) +

1

3
C(3) ,

and the fact that in the coloured case we must have C(k) = 0.
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Comparing the two expressions we see that we must have

1 = 2xz + y2 , (3.40)

ψ1 = 4xy , (3.41)

4x2 = ψ1ψ2 + f2
2 − ψ2

2 . (3.42)

Eq. (3.41) was already obtained in eq. (3.37); eq. (3.40) leads to

1 =
2(r + a)2 + b

2(r + a)2 + 2c
whence b = 2c . (3.43)

The l.h.s. of eq. (3.42) appears in eq. (3.30). Taking into account that in the coloured case

C(2) = 0, the solution must be such that

f2
1 = ψ2

1 − 4x2 = 2
(r + a)2 − c

[(r + a)2 + c]2
. (3.44)

Eliminating from the condition C(3) = 0 the f2 contribution by means of eq. (3.42) we

find

ψ2f
2
1 = 4x2ψ1

whence−−−−−−−−→ ψ2 = −2
r + a

(r + a)2 − c
. (3.45)

At this point we know ψ1 and ψ2 so we can use eq. (3.42) to find f2
2 :

f2
2 = 2

(r + a)2 + c

[(r + a)2 − c]2
. (3.46)

If we now introduce the redefinitions a = λ−1 and c = λ−2ξ then we find

ψ1 = −2λ
1 + λr

(1 + λr)2 + ξ
, ψ2 = −2λ

1 + λr

(1 + λr)2 − ξ
,

f2
1 = 2λ2 (1 + λr)2 − ξ

[(1 + λr)2 + ξ]2
, f2

2 = 2λ2 (1 + λr)2 + ξ

[(1 + λr)2 − ξ]2
.

(3.47)

For the solution to be well-defined on the range r ∈ (0,∞) we must have λ > 0 and |ξ| ≤ 1.

The Higgs field is then readily seen to be

φ1 =
2 (1 + ξ + λr)

r [(1 + λr)2 + ξ]
, φ2 =

2 (1− ξ + λr)

r [(1 + λr)2 − ξ]
. (3.48)

A special case is given by the solution with ξ = 0: in that case the Higgs field is given by

Φ =
1

r(1 + λr)
diag(1, 0,−1) , (3.49)

from which it is paramount that we are dealing with the embedding SU(2)’s coloured

solution in eq. (3.29), into SU(3) by means of the maximal/singular embedding of SU(2)

into SU(3) [28].

Figure 1 displays the behaviour of the above family of solutions for the variables rφi,

which, if we take into account eqs. (2.16) and (2.20), together with the fact that the
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Figure 1. The flow described by the solutions in this section on the (rφ1, rφ2)-plane. The solid

line in the center corresponds to ξ = 0, the upper solid line to ξ = −1 and the lower solid line to

ξ = 1. The dashed lines correspond to various values of |ξ| 6= 0, 1. All flows go towards the origin.

solutions have no Higgs v.e.v., can be thought of as the evolution of the colour charge

along the flow parametrized by r.

As promised at the beginning of this section, we now turn our attention to the case

in which there is a 2 × 2 Jordan block in the spectral representation of L. We can choose

vectors ~v, ~w(2) and ~w(1) such that L = ~w(2)~w(2)T and therefore, since the eigenvalues

vanish in the defective case,

R(µ) = − 1

µ

[

~v~vT + ~w(2)~w(1)T + ~w(1)~w(2)T
]

− 1

µ2
~w(2)~w(2)T . (3.50)

The generic expression of the resolvent in eq. (3.39), however, has a µ−3 term whereas

the chosen spectral representation does not: therefore the coefficient of the µ−3 term must

vanish, whence ψ1ψ2 + f2
2 − ψ2

2 = 0. This, together with eq. (3.30), implies that ψ2
1 = f2

1 .

Eq. (3.31) then implies that ψ1(ψ
2
2 − f2

2 ) = 0. The conclusion then must be that either

ψ1 = f1 = 0 and ψ2 = ±f2 or that ψ2 = f2 = 0 and ψ1 = ±f1; the non-zero functions are

the same as the SU(2) coloured solution in eq. (3.29).

That these solutions do not correspond to the regular embedding of SU(2) into SU(3)

becomes clear when we calculate the Higgs field for e.g. the case ψ1 = f1 = 0:

2Φ =
1

r
diag(2,−1,−1) +

1

r(1 + λr)
diag(0, 1,−1) . (3.51)

This solution can be thought of as an SU(3) Wu-Yang monopole coinciding with a coloured

solution, a combination which is, however, not a coloured solution even though it has no
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Higgs v.e.v. It does, however, show the transmutation of colour charge between r = 0 and

r = ∞11 typical of a coloured solution.

4 N = 2, d = 4 (super-)EYM coloured black holes

The characterisation of supersymmetric solutions to N = 2, d = 4 supergravity coupled to

m vector-multiplets with gauged isometries of ref. [2] called N = 2, d = 4 (Super-)EYM

does not deal with the most general of such theories [4, 29]. In what follows it is important

to understand the restrictions; we will briefly outline the main ingredients and restrictions,

referring the reader to ref. [2] for a more detailed discussion.

The bosonic field content of N = 2, d = 4 supergravity coupled to m vector multiplets

consists of a metric, m+ 1 vector fields AΛ (Λ = 0, . . . ,m) and m complex scalar fields Z i

(= 1, . . . ,m). The scalar fields parametrise a (special-)Kähler manifold M with a Kähler

metric Gīı = ∂i∂ı̄K, where K is the Kähler potential. The basic premise of N = 2 EYM is

that the metric G allows for Killing vectors and that we want to gauge a (necessarily non-

Abelian!) subgroup G ⊆ Isom(G) whose associated Killing vectors, denoted by KΛ, satisfy

[ KΛ , KΣ ] = −fΛΣ
Ω KΩ , (4.1)

where the f ’s are the structure constants of the Lie algebra g associated to G. Observe that

the way we are writing the Killing vectors would mean that we are using m+1 isometries:

this is the maximal possibility and we can consider other possibilities by taking some KΛ

to vanish.

The couplings of the scalars to themselves (that is, the Kähler metric) and to the

other fields are related and constrained by N = 2 supersymmetry and can be described

in a unified way by a structure called Special Geometry, see e.g. [3, 4, 30]. The central

object in this description is a symplectic section V belonging to a flat 2(m+1)-dimensional

bundle E × L1 → M with structure group Sp(m+ 1;R)×U(1), that has to satisfy

i = 〈 V | V 〉 , (4.2)

0 = Dı̄V , (4.3)

0 = 〈 DiV | V 〉 , (4.4)

where the bracket denotes the Sp(m+1;R)-invariant innerproduct and the D denote U(1)-

covariant (anti-)holomorphic derivatives. The action of the group we want to gauge can

then be lifted to the bundle and leads to the requirement that the symplectic section V be

invariant under G up to Sp(m+1;R) and U(1) transformations. The restriction imposed in

ref. [2] is then the statement that the compensating Sp(m+1;R) transformations must be

such that under the branching to G only singlets and the adjoint representation appears.

The restriction is easier to understand in those situations where the so-called prepro-

tential F exists [31]: in that case we have a homogeneous function F(X ) of degree 2 such

11In other words: the colour charge at spatial infinity and on the horizon are different and the solution

smoothly interpolates between these two configurations.
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that

Ω = e−K/2V =

(

XΛ

∂ΛF

)

−→











ie−K = 〈Ω|Ω〉 ,
0 = ∂ı̄Ω ,

0 = 〈∂iΩ|Ω〉 ,
(4.5)

where K is the Kähler potential. Ref. [2]’s restriction then means that the X transform un-

der G as the adjoint representation and singlets; this action must furthermore be such that

0 = fΛΣ
Ω XΣ ∂Ω F , (4.6)

which is the same thing as saying that the prepotential F is a G-invariant function [31].

The action of the bosonic sector of N = 2 super-EYM then reads (see e.g. [4, 29])

S =

∫

d4x
√

|g|
[

R(g) + 2Gi̄DµZ i
D
µZ̄ ̄ + 2Im (N )ΛΣ F

Λµν
F
Σ
µν

−2Re (N )ΛΣ F
Λµν ⋆ FΣµν − V (Z,Z∗)

]

,

(4.7)

where the gauge-covariant derivative and field strengths are defined as

DZ i = dZ i + A
Λ KΛ

i and F
Λ = dAΛ − 1

2
fΣΓ

Λ
A
Σ ∧ A

Γ . (4.8)

NΛΣ is the, model dependent, period matrix and V (Z,Z∗) is the scalar potential12

V (Z, Z̄) = −1

4
Im (N )ΛΣ PΛPΣ . (4.9)

In the above equations, KΛ
i(Z) are the holomorphic Killing vectors of the isometries that

have been gauged and PΛ(Z, Z̄) are the corresponding momentum maps; they are related

by

Ki
Λ = i Gi̄ ∂̄PΛ . (4.10)

Once we have defined the model, one sees that the supersymmetric solutions in the so-

called timelike case which is the one the black holes belong to, is constructed out of 2(m+1)

real seed functions denoted by IΛ and IΛ. These seed functions are such that if the Λ index

corresponds to a singlet under the G-action, the corresponding IΛ and IΛ are harmonic

functions on R
3, whereas if it corresponds to the adjoint, the Higgs field defined by

IΛ = −
√
2ΦΛ , (4.11)

must solve the Bogomol’nyi equation (1.1). The corresponding IΛ must solve an involved

equation, see [2, eq. (4.27)], and we will avoid this hurdle by taking them to vanish iden-

tically, which is always possible. Observe, however, that this means that the non-Abelian

gauge fields will have no electric components and will be purely magnetic.

From this point onwards, the construction of the solution is basically the same as for

an ungauged Abelian theory [5, 6]: as we are interested in spherically symmetric, static

12Observe that since the imaginary part of the period matrix is negative definite, the scalar potential is

positive semidefinite.
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spacetimes we must impose the condition that 〈I|DI〉 = 0, where D is the G-covariant

derivative. Having satisfied said condition, the metric becomes

ds2 = e2Udt2 − e−2U d~x2(3) where e−2U = W(I) , (4.12)

is a model-dependent homogeneous function of degree 2 called the Hesse potential [32–34].

The scalar fields are model-dependent but they are nicely expressed in terms of the Hesse

potential as

Zi =
Ĩi + iIi

Ĩ0 + iI0
where ĨΛ = −1

2

∂W

∂IΛ
. (4.13)

The final step in the construction consists in adjusting the integration constants of the

seed functions so that the solution describes the geometry of an extremal black hole outside

its horizon: in order for a spherically symmetric metric of the type in eq. (4.12) to be inter-

preted as a black hole, it should be asymptotically flat and singular at r = 0 only and this

singularity must be such that the limiting geometry at r = 0 is that of an aDS2×S2 space-

time. With these provisos, the area of the 2-sphere in this limiting geometry corresponds to

the area of the horizon of the black hole and therefore also to the entropy of the black hole

(See e.g. [35]). For a given Hesse potential and given seed functions, this entropy can be cal-

culated straightforwardly but need not be finite or positive: the regularity of the metric at

the horizon is then, by means of the entropy, a constraint on the parameters of the solution.

Further constraints on the parameters of the seed functions come from the fact that the

metrical factor e−2U must never vanish on the interval r ∈ (0,∞), as otherwise the solution

would have a curvature singularity on said interval, whence ruining the interpretation of

the solution as describing the exterior of an extremal black hole.

Having outlined the restrictions on the theories and the solutions, we are ready to use

the coloured solutions to the SU(3) Bogomol’nyi equations obtained in section 3.2 to build

supersymmetric coloured black holes.

4.1 CP
8
coloured black holes

The so-called CP
8
model has 9 vector fields, a scalar manifold that is the symmetric space

SU(1, 8)/U(8) and is defined by the prepotential

F =
1

4i
ηΛΣ XΛXΣ where η = diag(+, [−]8) , (4.14)

and the indices Λ and Σ run from 0 to 8. Since the prepotential is manifestly SO(1, 8) invari-

ant and we have 9 vector fields at our disposal we can at most gauge a 9-dimensional sub-

group G ⊂ SO(1, 8); if we couple this to the restriction that in the branching of SO(1, 8)’s

9 we must only find the adjoint and singlets of G, then we see that the singular embedding

of SU(3) into SO(8) does the trick [28].

Sticking to a purely magnetic solution, so that I0 = 0, we see that the metrical factor

becomes

e−2U =
1

2

(

I0
)2 − 1

2
IaIa =

1

2

(

I0
)2 − 2Tr

(

Φ2
)

= H2 − φ2
1 + φ1φ2 − φ2

2 , (4.15)
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where in the last step we redefined I0 =
√
2H. Since H is a SU(3)-singlet, it has to be a

harmonic function and, to preserve spherical symmetry, it has to be of the form

H = h+
p

r
so that lim

r→∞
e2U = h2 +

2hp

r
+ . . . (4.16)

where we have already used the asymptotic vanishing of the Higgs field characteristic of

coloured solutions. We take h2 = 1 in order for the metric to become asymptotically

Minkowski in spherical coordinates. The mass is then given by M = hp, which can always

be taken to be positive by taking h = sign(p), whence M = |p|. The entropy of the

non-Abelian black hole is readily calculated to be

S

π
=











p2 − 4 : ξ 6= ±1

p2 − 3 : ξ = ±1

(4.17)

where the 4 and the 3 are the monopole’s contribution to the entropy. We must have

|p| > 2 when ξ 6= 1 and |p| >
√
3 when ξ = ±1 in order for the entropy to be finite and

positive. As in the ungauged case, positive mass and a well-defined entropy of the horizon

is, at least for these solutions, enough to ensure the regularity of the metric.

The eight complex physical scalars in this theory, Za (a = 1, . . . , 8) are given by

Za =
Ia

I0
= −Φa

H

SU(3) defining rep.−−−−−−−−−−−−−−−−→ Z = −Φ

H
. (4.18)

In the last expression it is paramount that the scalars behave asymptotically as Z ∼ O(r−2)

and that near the horizon they behave as

lim
r→0

Z =











































−1

p
diag(1, 0,−1) : ξ 6= ±1

− 1

2p
diag(2,−1,−1) : ξ = +1

− 1

2p
diag(1, 1,−2) : ξ = −1

(4.19)

Let us stress once again that even though the near-horizon behaviour is determined by

(colour) charges only the Abelian charge p is asymptotically measurable. Also observe

that the hair parameters λ and ξ do not influence the asymptotic nor the near-horizon

behaviour, illustrating once again the non-applicability of the no-hair theorem in gravity

coupled to YM theories.

4.2 C-magic coloured black holes

The C-magic model is a model with 10 vector fields and 9 complex scalars parametrising

the symmetric space SU(3, 3)/S [U(3)×U(3)]. A convenient prepotential for this model

was given in ref. [36] and splits the 10 complex coordinates XΛ into a singlet under the
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SU(3) × SU(3) action, X 0, and a 3 × 3 matrix that we denote by X , transforming as the

(3, 3̄) irrep. The prepotential can then be expressed as

F =
det (X )

X 0
. (4.20)

As was argued in ref. [2] this model allows for a gauging of the diagonal SU(3), which seeing

the branching rule (3, 3̄) → 1 ⊕ 8 [28] is exactly what is needed to fulfill the constraints

outlined in section 4.

Ref. [2] then used the spherically symmetric Wilkinson-Bais monopoles [24] for SU(3)

to construct supersymmetric globally regular solutions describing the (super-)gravitational

backreaction of said monopoles and also used a small generalisation to construct supersym-

metric non-Abelian black hole. All those solutions have, however, asymptotic colour charge

and non-vanishing Higgs v.e.v. and in this section we are going to use the solutions of the

Bogomol’nyi equation derived in section 3.2 to construct coloured black-hole solutions to

the C-magic model.

Following ref [2], we shall take I0 = 0, which means that the Abelian gauge field A
0 is

purely electric, and also IΛ 6=0 = 0. This last choice leads to a static solution with a metric

factor with the simple form

e−2U =
√

H det (K Id− 2Φ) =
√

H (K − φ1)(K − φ2 + φ1)(K + φ2) , (4.21)

where we defined I0 = 1
4
√
2
H and took the singlet seed function to be 1√

2
K.13 As H and

K are singlets under the gauge group, they are harmonic functions and taking them to be

spherically symmetric they can be expanded as

H = h+
q

r
, K = k +

p

r
. (4.22)

The criterion for the absence of coordinate singularities for any r ∈ (0,∞) immediately

implies that sign(h) = sign(q).

By considering the asymptotic behaviour of the metrical factor in eq. (4.21) we can

straightforwardly normalise the solution to asymptote to ordinary Minkowski spacetime by

taking hk3 = 1 which then leads to the following expression for the mass

M =
k3q + 3k−1p

4
. (4.23)

k is related to the values of the scalars at spatial infinity. The actual expression is compli-

cated and not very enlightening.

As one can see from figure 1 the limit r → 0 differs substantially between the cases

ξ 6= ±1 and ξ = ±1 and we will discuss the regularity properties of the solution seperately.

From the metrical factor in eq. (4.23) it follows that the case ξ = −1 can be obtained from

the case ξ = 1 by substituting φ1 ↔ φ2, K → −K and H → −H, and, accordingly, we

shall not discuss the construction of a coloured black-hole solution for the case ξ = −1.

13Observe that ref. [2] uses the definition I0 = 1√
2
H, which means that the metrical factor in [2, eq. (5.47)]

is missing a factor of two. In said equation, the harmonic function K is denoted by λ, a naming we changed

here in order to avoid confusion.
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4.2.1 ξ 6= ±1

In this case the entropy reads

S(ξ 6= ±1) = π
√

qp(p2 − 4) . (4.24)

there are four possible conditions on the charges that make the entropy well defined and

finite:

Case a) p > 2 and q > 0. The absence of zeroes in the function H then implies that h > 0,

whence also k > 0 by the normalisation condition; the mass as calculated by eq. (4.23)

is automatically positive.

Case b) p < −2 and q < 0. This further implies h < 0 and k < 0 implying that the mass is

automatically positive.

Case c) p ∈ (0, 2) and q < 0. Seeing that we must have h < 0 and k < 0, the mass is not

automatically positive. One can, however, see fairly rapidly that in this case the

combination H−φ2 appearing in the metrical factor (4.21) has a zero on the interval

(0,∞): conforming to the criteria outlined above, this means that case c) is not a

viable option and must be discarded.

Case d) p ∈ (−2, 0) and q > 0. This case must be supplemented by the conditions h > 0 and

k > 0, which then means that the factor H − φ1 has a zero, whence this case must

also be discarded.

For the cases a) and b) one can see that the resulting metrical factor has no zeroes for

r > 0 and the corresponding solutions describe coloured black holes.

4.2.2 ξ = 1

The entropy reads

S(ξ = 1) = π
√

q(p+ 1)2(p− 2) . (4.25)

There are possibilities:

Case α) p > 2 and q > 0, which following the same reasoning as before leads to the further

constraints h > 0 and k > 0 and therefore also to positive mass.

Case β) p < −1 and q < 0, whence also h < 0 and k < 0, which also implies that the mass is

positive.

In these two cases the metrical factor is free of coordinate singularities on the interval

(0,∞) and do define coloured black holes.

Observe that as far as the entropy is concerned, we could allow for the possibility of

p ∈ (−1, 2). This possibility requires q < 0, h < 0 and k < 0, which automatically implies

that the factor H + φ2 in the metrical factor has a zero and must therefore be discarded.
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5 Conclusions

In this article we have constructed coloured black hole solutions to two models ofN = 2, d =

4 EYM theories with an SU(3) gauge group, namely the CP
8
and the C-magic model. This

construction was possible due to the fact that the Bogomol’nyi equation, a prominent ingre-

dient in the construction of supersymmetric solutions to the used class of theories, under the

assumption of (maximal) spherical symmetry is an integrable system. The system admits a

Lax pair and after having identified the solutions needed to construct coloured black holes as

corresponding to defective Lax matrices, these were constructed for the SU(3) Bogomol’nyi

equation. The coloured black holes built upon these solutions have the same characteristics

as the SU(2) black holes: there is no asymptotic colour charge, one always needs extra active

Abelian fields and most importantly of all the horizon is colourful and the entropy depends

only on the colour charge on the horizon and not on the hair parameters of the solutions.

The transmutation solution in eq. (3.51) leads to a type of black hole that is unavailable

in the SU(2)-gauged models considered up till now: as one can see, the solution is such

that the asymptotic colour charge is non-vanishing but different from the horizon colour

charge and it can be used to construct black hole solutions along the lines outlined in the

last section. Consider for example the case of CP
8
treated in section 4.1, the embedding

into the C-magic model being also straightforward: the metrical factor can be expanded as

e−2U = h2 +
2hp

r
+

p2 − 4

r2
+

2λ

r(1 + λr)2
. (5.1)

According to the criteria outlined in section 4 we see that in order to have a regular black-

hole solution we must have h = sign(p) so that the mass is M = |p| ≥ 0 and |p| > 2 so that

the entropy, given by S = π(p2 − 4) is finite and positive. These two conditions suffice to

make the metrical factor a sum of positive terms, producing a perfectly well-defined black-

hole solution. By looking at the expression for the scalars in eq. (4.19) one can readily see

that they are also well defined and behave near the horizon as the ξ 6= ±1 case in eq. (4.19).

In section 3.2 we saw that the SU(3) coloured solution is related to a 3 × 3 Jordan

block, whereas the transmutation solution is related to the appearance of a smaller Jordan

block. In fact, it can be shown that the SU(N) coloured solutions can only follow from

a Lax matrix that is similar to an N ×N Jordan block, meaning that the transmutation

solutions are the rule rather the exception for N > 3. The question of whether these

transmutation solutions can, like the one for SU(3), be written as the sum of Wu-Yang

monopoles and coloured solutions for smaller N should be worth investigating.

The coloured and the transmutation black holes have the characteristic that the asymp-

totic colour charge does not match the colour charge seen on the horizon. Strictly speaking,

non-Abelian charges can only be defined globally, at infinity but the calculation of the en-

tropy indicates clearly the presence of non-Abelian charges, different from those seen at

spatial infinity, which contribute to it. This is a very intriguing phenomenon which calls

for further investigation. A microscopic interpretation of the entropy of non-Abelian black

holes (coloured or with asymptotic charges) is badly needed.

As for the celebrated attractor mechanism [37–40], it works (in the covariant sense

discovered in ref. [1]), but only in terms of the horizon charges. A further difference from
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the well-known Abelian case is the fact that the asymptotic value of the scalars related to

the Higgs field is not arbitrary: it has to vanish for coloured black holes, as discussed in

section 2.

We hope to have convinced the reader that the physics of non-Abelian charged black

holes has very interesting features that go far beyond the well-known existence of non-

Abelian hair and deserves further investigation. Work in this direction is in progress.
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[13] Z.-Y. Fan and H. Lü, SU(2)-colored (A)dS black holes in conformal gravity,

JHEP 02 (2015) 013 [arXiv:1411.5372] [INSPIRE].

[14] A.N. Leznov and M.V. Saveliev, Representation theory and integration of nonlinear

spherically symmetric equations to gauge theories, Commun. Math. Phys. 74 (1980) 111

[INSPIRE].

[15] T. Koikawa, Exact SU(N) monopole solutions with spherical symmetry by the inverse

scattering method, Phys. Lett. B 110 (1982) 129 [INSPIRE].

[16] R. Farwell and M. Minami, One-dimensional Toda molecule. 1. General solution,

Prog. Theor. Phys. 69 (1983) 1091 [INSPIRE].

[17] R. Farwell and M. Minami, One-dimensional Toda molecule. 2. The solutions applied to

Bogomolny monopoles with spherical symmetry, Prog. Theor. Phys. 70 (1983) 710 [INSPIRE].

[18] A. Anderson, An elegant solution of the N body Toda problem,

J. Math. Phys. 37 (1996) 1349 [hep-th/9507092] [INSPIRE].
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