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AN Õ(log2(N)) TIME PRIMALITY TEST

FOR GENERALIZED CULLEN NUMBERS

JOSÉ MARÍA GRAU AND ANTONIO M. OLLER-MARCÉN

Abstract. Generalized Cullen Numbers are positive integers of the form
Cb(n) := nbn + 1. In this work we generalize some known divisibility prop-
erties of Cullen Numbers and present two primality tests for this family of
integers. The first test is based in the following property of primes from this

family: nbn ≡ (−1)b (mod nbn +1). It is stronger and has less computational
cost than Fermat’s test (to bases b and n) and than Miller-Rabin’s test (if b is
odd, to base n). Pseudoprimes for this new test seem to be very scarce, only 4
pseudoprimes have been found among the many millions of Generalized Cullen
Numbers tested. We also present a second, more demanding, test for which
no pseudoprimes have been found. These tests lead to an algorithm, running
in Õ(log2(N)) time, which might be very useful in the search of Generalized
Cullen Primes.

1. Introduction

The first major breakthrough in the general theory of primality testing was
achieved by Adleman, Pomerance and Rumely (see [1]) giving a deterministic pri-
mality test running in (log n)O(log log log n) time. This algorithm, later improved by
Cohen and Lenstra (see [5]), is known as the APRCL algorithm.

In 2004 three scholars from Kanpur University (Agrawal, Kayal and Saxena)
introduced the AKS algorithm (see [2]), which was the first deterministic primal-
ity test running in polynomial time. In the second version of their paper they
proved that the running time of their algorithm was Õ((log n)7.5). Nevertheless,
and despite being one of the cornerstones of Computational Number Theory, this
algorithm has not been very useful in practice. This is because numbers for which
the AKS algorithm is faster than the usual ones are beyond current computation
capacity. Even the so-called practical versions of the AKS algorithm (see [3], for
instance) are not fast enough. As a consequence, prime “hunters” focus on families
of integers for which primality can be determined by useful algorithms.

For restricted families of integers, much faster algorithms are known. The Lucas-
Lehmer algorithm (see [16]), used for Mersenne Numbers, is deterministic and runs

in Õ((log n)2) time. Proth, in [17], also gives an algorithm running in Õ((logn)2)
time, which applies to numbers such that ν2(n− 1) > 1

2 log2 n where 2ν2(m) is the
biggest power of 2 dividing m and provided an integer a is given such that the
Jacobi symbol

(
a
n

)
= −1. Proth’s algorithm is not deterministic for every n. Later,
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Williams [20] or Konyagin and Pomerance [12] extended these techniques to wider
families of integers.

Positive integers of the form n2n + 1 are called Cullen Numbers and were first
introduced by Father James Cullen in 1905 (see [6], [9, B20] or [13] for instance).
Primes of this form are very scarce (in fact, in [10] it is shown that almost all Cullen
Numbers are composite). Pseudoprimality of the Cullen Numbers was addressed
from the statistical point of view in [15]. Also, primality criteria suitable for Cullen
Numbers have been presented and discussed in [18]. The only known Cullen Primes
are those for n equal to:

1, 141, 4713, 5795, 6611, 18496, 32292, 32469, 59656, 90825, 262419,
361275, 481899, 1354828, 6328548, 6679881 (sequence A005849 in OEIS).

The largest known Cullen Prime is 6679881× 26679881 + 1. It is a megaprime with
2,010,852 digits and was discovered by a PrimeGrid participant from Japan. It
is the fifteenth biggest known prime. In [4] a sufficient condition for primality for
Cullen Numbers was given.

A quite straightforward generalization of these numbers are the so-called Gen-
eralized Cullen Numbers (GCN for short) which are integers of the form Cb(n) :=
nbn + 1. This family was introduced by H. Dubner in [8] and is one of the main
sources for prime number “hunters”. There exists a distributed computing project
(http://www.primzahlenarchiv.de/) to find Generalized Cullen Primes (GCP for
short) with the biggest GCP being C151(139948), an integer with 304,949 digits.
Noteworthy, for 29 values of b smaller than 200 no GCP has been found.

To date, no specific primality test for Generalized Cullen Numbers has been
introduced. This is the main goal of this work. The paper is organized as follows.
In the second section we generalize some known divisibility properties of Cullen
Numbers. In Section 3 we present two probabilistic primality tests for GCN. The
first test (TEST1) is based on the fact that nbn ≡ (−1)b (mod Cb(n)) for every GCP
Cb(n). This test is stronger and has less computational cost than Fermat’s test (for
bases b and n) and than Miller-Rabin’s test (if b is odd, to base n) and seems
to have very few pseudoprimes. Thus, the probability of error is extremely small:
among the millions of numbers tested, only four pseudoprimes have been found.
We also present another test (TEST2), more demanding than TEST1, for which no
pseudoprime has been found. In the fourth section we present a sufficient condition
for primality based on TEST2, which has allowed us to certify the primality of
nearly every known GCP with the use of very modest technological resources in
just a few minutes. We are convinced that, with the use of better technology
directed to an efficient modular exponentiation, this algorithm would help to break
records for GCP. Finally, in Section 5, we establish the computational complexity
of the presented tests; we give the running time of our algorithm for various cases;
and we close the paper with an important conjecture.

2. Some divisibility properties

Although the main goal of the paper is to present primality tests for General-
ized Cullen Numbers, it is interesting to study some divisibility properties of such
numbers. First of all, we are interested in finding families of composite Generalized
Cullen Numbers. A first result in this direction goes as follows.
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Proposition 1. Let nb(k, p) = (bk−k)(p−1)−k and let p be a prime not dividing
b. Then p divides Cb(nb(k, p)).

Proof. It is clear that nb(k, p) ≡ −bk (mod p). Now, since bp−1 ≡ 1 (mod p) we
have that:

Cb(nb(k, p)) ≡ −b(b
k−k)(p−1) + 1 ≡ 0 (mod p). �

Observe that, if p divides Cb(n), then p does not divide b, so if n �= nb(k, p), we
can apply the previous proposition to find another composite Generalized Cullen
Number with the same base. Nevertheless, this process can be applied only in one
step; i.e., given a prime divisor of Cb(n) we only find (at most) another m such
that p also divides Cb(m). Thus, it is interesting to find a process that allows us
to construct infinite families of Generalized Cullen Numbers divisible by the same
prime. The next proposition goes in this direction.

Proposition 2. Let p be a prime dividing Cb(n) and let hp = expp(b); i.e., the
smallest integer such that bhp ≡ 1 (mod p). Then p also divides Cb(n+mphp) for
every integer m.

Proof. If m = 1, we have:

Cb(n+ php) = bphp(Cb(n)− 1) + phpb
n+php + 1 ≡ nbn + 1 = Cb(n) ≡ 0 (mod p)

and the result follows inductively. �

The propositions above generalize known results for the case b = 2 that can be
found in [11] and [7].

Now, given two Generalized Cullen Numbers, it can be interesting to study their
common divisors. For example, if we consider Cb(n) and Cβ(n), it is easy to see
that any common divisor of these numbers must also divide |bn−βn|. If we restrict
ourselves to Generalized Cullen Numbers of the same base, we can present a more
interesting result (see [14] for related considerations).

Proposition 3. Let Cb(n) and Cb(m) be two different Generalized Cullen Numbers
with αn = βm. If d is a common divisor of Cb(n) and Cb(m), then d also divides
|nα + (−1)α+β−1mβ|.

Proof. First of all, note that d cannot divide b. Also, since d is a common divisor,
it must, assuming n ≥ m, divide |Cb(n)−Cb(m)| = bn|n−mbm−n|. Consequently,
d divides |n−mbm−n|.

Now, d also divides nCb(n) = n2bn + n and it follows that d divides |n2bn +
mbm−n|. If, for instance, n < m − n, we get that d divides |n2 − mbm−2n|. If
m− n < n, we would get that d divides |m+ n2b2n−m|.

Clearly, we can proceed in this way until both powers of b are the same. Fur-
thermore, we will need to perform the previous computations exactly α + β − 1
times and at every step, the middle sign changes and the exponent of either m or n
increases by 1. Thus, the desired result is finally obtained. We omit the details. �

It is worth remarking that the previous proposition does not depend on b. Thus,
if Am,n = |nα+(−1)α+β−1mβ | is a prime, then Cb(n) and Cb(m) are either coprime
or their greatest common divisor is Am,n for every value of b.
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3. Two primality tests

This section is devoted to presenting two probabilistic primality tests for General-
ized Cullen Numbers. The first one will be compared with Fermat and Miller-Rabin
for some witnesses. The second one will be the basis of a sufficient condition for
primality which will be introduced in the next section.

The proposition below presents the property of GCP in which TEST1 will be
based.

Proposition 4. If Cb(n) is prime, then nbn ≡ (−1)b (mod Cb(n)).

Proof. Clearly, nbn ≡ −1 (mod Cb(n)). On the other hand, since b and Cb(n) are
coprime, we have that bnb

n ≡ 1 (mod Cb(n)).
Now, taking this into account:

−(−1)b ≡ (−1)b
n−1 ≡ (nbn)b

n−1 ≡ nbn−1bnb
n−n ≡ nbn−1b−n (mod Cb(n)),

from where it follows that:

nbn ≡ −(−1)bnbn ≡ (−1)b (mod Cb(n)),

where negative exponents make sense since we are working over a field. �

Let us now relate this test with Fermat and Miller-Rabin primality tests. In
fact, we will see that our test is stronger than both of them in the sense that if
a Generalized Cullen Number passes our test, it will also pass Fermat and Miller-
Rabin tests (the latter only for odd b) for certain choices of the base.

Proposition 5. If nbn ≡ (−1)b (mod Cb(n)) for an odd Cb(n), then Cb(n) is a
Fermat (or weak) probable prime to base n.

Proof. We have that:

nCb(n)−1 = nnbn = (nbn)n ≡ (−1)bn = 1 (mod Cb(n)),

since bn must be even. �

Remark. Although TEST1 is very similar to Fermat’s test to base n, it has turned
out to be more subtle. We have only found four pseudoprimes for our test. Namely:
C80(2) = 12801, C3570(3) = 136497879001, C570(4) = 422240040001 and C1470(4) =
18677955240001. On the other hand, three more pseudoprimes (C7(4), C63336(2)
and C2355990(2)) appear for Fermat’s test to base n. Observe that C1470(4) and
C570(4) are Carmichael Numbers.

Proposition 6. If nbn ≡ (−1)b (mod Cb(n)), then Cb(n) is a Fermat (or weak)
probable prime to base b.

Proof. Since b and n are coprime with Cb(n), they both have an inverse modulo
Cb(n). Moreover, n−1 ≡ −bn (mod Cb(n)).

Now:

(−1)b ≡ nbn ≡ (−b−n)b
n ≡ (−1)bb−nbn (mod Cb(n)).

Thus, b−nbn ≡ 1 (mod Cb(n)) and, consequently, b
Cb(n)−1 = bnb

n ≡ 1 (mod Cb(n)).
�

Remark. Although TEST1 is theoretically stronger than Fermat’s test to base b, we
have not found pseudoprimes for this test which are not pseudoprimes for TEST1.
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Proposition 7. Let b be an odd integer. If nbn ≡ (−1)b(mod Cb(n)), then Cb(n)
is a strong probable prime to base n; i.e., it passes the Miller-Rabin primality test.

Proof. Put n = 2sk with k being an odd integer and s ≥ 0. Then, Cb(n) =
2skbn + 1 = 2sm + 1 with m = kbn. We have that m is odd and, moreover,
nm = nkbn ≡ (−1)bk ≡ −1 (mod Cb(n)). Consequently Cb(n) passes the Miller-
Rabin test to base n as claimed. �
Remark. The previous result is no longer true for even values of b. For instance,
C80(2) and C3570(3) pass TEST1 but do not pass the Miller-Rabin test for n = 2
and 3, respectively.

The following result is stronger than Proposition 4 and will give rise to another
probabilistic test that we will denote by TEST2. This test involves cyclotomic
polynomials of prime index and is more demanding than TEST1. It will be the
basis of a sufficient condition for primality in the next section.

Theorem 1. Let p be a prime number and b = pmb′ with p not dividing b′. If
Cb(n) := nbn + 1 is prime, then one of the following holds:

i) (−n)
bn

pi ≡ 1 (mod Cb(n)) for every i ∈ {0, . . . , nm}.
ii) There exists K < mn such that (−n)

bn

pi ≡ 1 (mod Cb(n)) for every i ∈
{0, . . . ,K} and Φp((−n)

bn

pK+1 ) ≡ 0 (mod Cb(n)), where Φp is the p-th cy-
clotomic polynomial.

Proof. Proposition 4 implies that (−n)
bn

p0 ≡ 1 (mod Cb(n)). If i) does not hold,

let K < mn be the biggest integer such that (−n)
bn

pK ≡ 1 (mod Cb(n)). Put

x = (−n)
bn

pK+1 . Then 0 ≡ xp − 1 = (x− 1)Φp(x) (mod Cb(n)). The maximality of
K implies that x − 1 �≡ 0 (mod Cb(n)) so, since Cb(n) is prime, Φp(x) ≡ 0 (mod
Cb(n)) and the proof is complete. �

Every Generalized Cullen Number satisfying Theorem 1 for some p, prime divisor
of b, will be certified as a probable prime for TEST2 to base p. If it is composite, we
will name it as a pseudoprime for TEST2 to base p. Among the four pseudoprimes
found for TEST1, the only one that passes TEST2 for some prime divisor of b is
the Carmichael Number C1470(4) which is a pseudoprime for TEST2 to base 2.
Nevertheless, C1470(4) is certified as composite since it does not pass TEST2 for
any other prime divisor of 1470. The other three pseudoprimes for TEST1 do not
pass TEST2 for any base. The authors have not found any composite Generalized
Cullen Number passing TEST2 for every prime divisor of b. In fact they conjecture
that such GCN does not exist.

4. A sufficient condition for primality

We will now see that passing TEST2, together with a bounding condition on K,
gives a sufficient condition for primality.

Theorem 2. Let b = pr11 · · · prss be a positive integer. If there exist a prime pj
dividing b and K ≤ nrj such that:

i) Φpj
((−n)

bn

p
K+1
j ) ≡ 0 (mod Cb(n)),

ii) nrj −K > 1
2 logpj

nbn = 1
2 logpj

n+ n
2 logpj

b,
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then Cb(n) is prime.

Proof. If q is a prime divisor of Cb(n), we have that Φpj
((−n)

bn

p
K+1
j ) ≡ 0 (mod q).

It follows that the order of (−n)
bn

p
K+1
j in Z

∗
q is exactly pj and, consequently, the

order of −n is a divisor of bn

pK
j

= pnr11 · · · pnrj−K
j · · · pnrss . Moreover, (−n)

bn

p
K+1
j

is not congruent with 1. For if it was, then 0 ≡ Φpj
(1) (mod q) which is a

contradiction, q and pj being coprime. Thus, the order of −n does not divide
bn

pK+1
j

= pnr11 · · · pnrj−K−1
j · · · pnrss . As a consequence, the order of −n is a multiple

of p
nrj−K
j and it follows that p

nrj−K
j |q − 1. Finally we obtain that:

q ≥ p
nrj−K
j + 1 > p

1
2 logpj

nbn

j + 1 =
√
nbn + 1 ≥

√
Cb(n).

This must hold for every prime divisor q of Cb(n). Clearly it is a contradiction
unless q = Cb(n) is its only prime divisor and the result follows. �

If b is a prime-power, the previous result can be slightly simplified in the following
way.

Corollary 1. Let b = pm with p a prime. If Φp((−n)p
K−1

) ≡ 0 (mod Cb(n)) with
nm ≥ K > mn

2 + 1
2 logp(n), then Cb(n) is prime.

Remark. The previous corollary generalizes [4] for b = 2 and m = 1. Observe that

in such case, Φ2((−n)2
K−1

) = n2K−1

+ 1.

5. Computational complexity

Let us present the pseudo code of an algorithm implementing TEST1 and TEST2.
We will also justify its polynomial complexity.

Algorithm (TEST1 and TEST2 to base P ).
INPUT: n and b = pr11 . . . prss ; M := rj ; P := pj and N := nbn + 1

Step 1: If nbn �≡ (−1)b (mod N)
then RETURN: N is a COMPOSITE NUMBER. Stop.
Step 2: If nbn ≡ (−1)b (mod N)
then RETURN: N is a PROBABLE PRIME for TEST1
and go to Step 3.

Step 3: Compute K := max{i ≤ nM | ((−n)
bn

Pi ≡ 1 (mod N)}
Step 4: If K = nM
then RETURN: N is a PROBABLE PRIME for TEST2 to base P . Stop.

Step 5: If K < nM and ΦP ((−n)
bn

PK+1 ) ≡ 0 (mod N)
then RETURN: N is a PROBABLE PRIME for TEST2 to base P
and go to Step 7.

Step 6: If K < nM and ΦP ((−n)
bn

PK+1 ) �≡ 0 (mod N)
then RETURN: N is a COMPOSITE NUMBER. Stop.
Step 7: If nM −K > 1

2 logP (N − 1)
then RETURN: N is a PRIME NUMBER. Stop.

The correctness of the algorithm is a straightforward consequence of Proposition
4 and Theorems 1 and 2. To study its complexity, we first need to present a
technical lemma.
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Lemma 1. Let A = {a0, a1, . . . , an} be a set with an �= a0 and with the property
as �= a0 ⇒ as+1 �= a0. If the computation of each ai is of complexity O(h), then
the complexity of computing max{i | 0 ≤ i ≤ n, ai = a0} is O(h log2(n)).

Proof. If a�n
2 � = a0, then the maximum lies in the second half of the interval.

Otherwise, it is in the first half. Iterating this process, the maximum will be found
in about log2 n steps and the result is then straightforward. �

Theorem 3. If N := nbn + 1, the complexity of the algorithm above is

O(log3(W (N)) log2(N)) ⊂ Õ(log2(N)),

where W is Lambert’s W function; i.e., the inverse function of f(w) = wew.

Proof. The complexity of steps 1 and 2 is that of the modular exponentiation
n(N−1)/n (mod N). Taking into account that O(n) = O(W (N)) ⊂ O(log(N)) and
that products modulo N can be performed by the Schoenhage-Strassen algorithm
(see [19]) with complexity

O(log(N) log(log(N)) log(log(log(N)))),

we get the complexity of these two steps to be:

T (N) := O

(
log

(
N

W (N)

)
log(N) log(log(N)) log(log(log(N)))

)
.

Step 3 requires performing at most log(nM) modular exponentiations with com-
plexity analogous to that of step 1. Consequently, by the lemma above, the total
complexity will be

O(T (N) log(W (N))) ⊂ O(log3(W (N)) log2(N)) ⊂ Õ(log2(N)).

Steps 4 through 7 do not increase the complexity since they are mere verifications
of equalities and inequalities. �

From a computational point of view, this work is promising because it presents
primality tests for GCN whose computational complexity is the same as that of
modular exponentiation. This is the case, since only a relatively small number of
modular power has to be computed. Other tests of general character are clearly
inferior. For example, the Lucas test, which seems appropriate here due to the easy
factorization of Cb(n) − 1, has problems if n has many prime divisors. Although
the technology used by the authors limits them to using the PowerMod command
in Mathematica� 6.0 (in an Intel core2 Duo P7450 @ 2.13 GHz with 4Gb of RAM),
they have been able to certify primality for nearly every known GCP. We are sure
that the tests presented in this work, using a better technology focused on efficient
modular exponentiation, will allow to break records in the family of GCN.

Just to enlighten what we have just said, let us compare our primality test with
the PrimeQ command implemented in Mathematica�. According to Mathematica�

manual, this command uses the multiple Rabin-Miller test in bases 2 and 3 com-
bined with a Lucas pseudoprime test. Below we present the running times for the
certification of some known GCP (for b = 3, 8 and 20). We also show the number
of modular exponentiations performed in the third step of the algorithm.

Note that PrimeQ is a probabilistic test (although according to Mathematica�

manual no pseudoprime for this test has been found). In the examples above
our test certified primality in a deterministic way and faster (except for two cases)
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b=3, n = 1400 1850 2848 4874 7268 19290 337590

Number of digits of C3(n) 672 886 1363 2330 3472 9208 161077

K + 1 (Step 3) 1 2 2 1 1 1 ?

TEST2 to base 3 (Time in s.) 0.06 0.17 0.56 1.49 4.55 54.16 ?

PrimeQ (Time in s.) 0.09 0.17 0.50 2.04 6.06 71.19 ?

b=8, n= 5 17 23 1911 20855 35945 42816

Number of digits of C8(n) 6 17 23 1730 18839 32467 38672

K + 1 (Step 3) 2 2 2 3 6 5 2

TEST2 to base 2 (Time in s.) 0.87 788. 2811. 2112.

PrimeQ(Time in s.) 0.93 464. 1933. 2930.

b=20, n= 3 6207 8076 22356

Number of digits of C20(n) 5 8080 10512 29091

K + 1 (Step 3) 1 1 1 2

TEST2 to base 5 (Time in s.) 0. 32.1 62.4 1347.

PrimeQ (Time in s.) 0. 50.88 99.6 1396.

than PrimeQ. The deterministic version of PrimeQ implemented in Mathematica�,
ProvablePrimeQ, was so slow that it is not worth presenting the comparison.

To finish, we have to point out that the presented algorithm ultimately relies on
the choice of a prime divisor of b. Also note that, for a fixed p, if the output of the
presented algorithm is a PRIME NUMBER, the tested integer is certainly a prime,
but it could be possible that it produces a false negative (i.e., a genuine GCP may
not be certified as such). Nevertheless, computational evidence suggests that this
is not the case for moderately big values of n; in fact, such primes have been found
only for n < b. Moreover, the experiments also suggest that in step 3 the value
of K is always very small with respect to n. These considerations lead us to the
following conjecture.

Conjecture. If n > b, there always exists p, a prime divisor of b, such that the
algorithm (using base p) certifies the primality or the compositeness of Cb(n). Note
that, if b is a prime power, there is only one choice for p.
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